基于神经网络的遗忘推理的加密/ML协同设计

S. Hussain, Mojan Javaheripi, Mohammad Samragh, F. Koushanfar
{"title":"基于神经网络的遗忘推理的加密/ML协同设计","authors":"S. Hussain, Mojan Javaheripi, Mohammad Samragh, F. Koushanfar","doi":"10.1145/3460120.3484797","DOIUrl":null,"url":null,"abstract":"We introduce COINN - an efficient, accurate, and scalable framework for oblivious deep neural network (DNN) inference in the two-party setting. In our system, DNN inference is performed without revealing the client's private inputs to the server or revealing server's proprietary DNN weights to the client. To speedup the secure inference while maintaining a high accuracy, we make three interlinked innovations in the plaintext and ciphertext domains: (i) we develop a new domain-specific low-bit quantization scheme tailored for high-efficiency ciphertext computation, (ii) we construct novel techniques for increasing data re-use in secure matrix multiplication allowing us to gain significant performance boosts through factored operations, and (iii) we propose customized cryptographic protocols that complement our optimized DNNs in the ciphertext domain. By co-optimization of the aforesaid components, COINN brings an unprecedented level of efficiency to the setting of oblivious DNN inference, achieving an end-to-end runtime speedup of 4.7×14.4× over the state-of-the-art. We demonstrate the scalability of our proposed methods by optimizing complex DNNs with over 100 layers and performing oblivious inference in the Billion-operation regime for the challenging ImageNet dataset. Our framework is available at https://github.com/ACESLabUCSD/COINN.git.","PeriodicalId":135883,"journal":{"name":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"COINN: Crypto/ML Codesign for Oblivious Inference via Neural Networks\",\"authors\":\"S. Hussain, Mojan Javaheripi, Mohammad Samragh, F. Koushanfar\",\"doi\":\"10.1145/3460120.3484797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce COINN - an efficient, accurate, and scalable framework for oblivious deep neural network (DNN) inference in the two-party setting. In our system, DNN inference is performed without revealing the client's private inputs to the server or revealing server's proprietary DNN weights to the client. To speedup the secure inference while maintaining a high accuracy, we make three interlinked innovations in the plaintext and ciphertext domains: (i) we develop a new domain-specific low-bit quantization scheme tailored for high-efficiency ciphertext computation, (ii) we construct novel techniques for increasing data re-use in secure matrix multiplication allowing us to gain significant performance boosts through factored operations, and (iii) we propose customized cryptographic protocols that complement our optimized DNNs in the ciphertext domain. By co-optimization of the aforesaid components, COINN brings an unprecedented level of efficiency to the setting of oblivious DNN inference, achieving an end-to-end runtime speedup of 4.7×14.4× over the state-of-the-art. We demonstrate the scalability of our proposed methods by optimizing complex DNNs with over 100 layers and performing oblivious inference in the Billion-operation regime for the challenging ImageNet dataset. Our framework is available at https://github.com/ACESLabUCSD/COINN.git.\",\"PeriodicalId\":135883,\"journal\":{\"name\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3460120.3484797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3460120.3484797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

我们介绍了COINN -一个高效,准确和可扩展的框架,用于两方设置中的遗忘深度神经网络(DNN)推理。在我们的系统中,在执行DNN推理时,不会向服务器透露客户端的私有输入,也不会向客户端透露服务器的专有DNN权重。为了加快安全推理的速度,同时保持较高的准确性,我们在明文和密文领域进行了三个相互关联的创新:(i)我们为高效密文计算开发了一种新的特定领域的低比特量化方案,(ii)我们构建了新的技术,用于增加安全矩阵乘法中的数据重用,使我们能够通过因式运算获得显着的性能提升,(iii)我们提出了定制的加密协议,以补充我们在密文域中优化的dnn。通过对上述组件的共同优化,COINN为不经意DNN推理的设置带来了前所未有的效率水平,实现了端到端运行时加速4.7×14.4×。我们通过优化超过100层的复杂dnn,并在具有挑战性的ImageNet数据集的十亿操作机制中执行遗忘推理,证明了我们提出的方法的可扩展性。我们的框架可从https://github.com/ACESLabUCSD/COINN.git获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
COINN: Crypto/ML Codesign for Oblivious Inference via Neural Networks
We introduce COINN - an efficient, accurate, and scalable framework for oblivious deep neural network (DNN) inference in the two-party setting. In our system, DNN inference is performed without revealing the client's private inputs to the server or revealing server's proprietary DNN weights to the client. To speedup the secure inference while maintaining a high accuracy, we make three interlinked innovations in the plaintext and ciphertext domains: (i) we develop a new domain-specific low-bit quantization scheme tailored for high-efficiency ciphertext computation, (ii) we construct novel techniques for increasing data re-use in secure matrix multiplication allowing us to gain significant performance boosts through factored operations, and (iii) we propose customized cryptographic protocols that complement our optimized DNNs in the ciphertext domain. By co-optimization of the aforesaid components, COINN brings an unprecedented level of efficiency to the setting of oblivious DNN inference, achieving an end-to-end runtime speedup of 4.7×14.4× over the state-of-the-art. We demonstrate the scalability of our proposed methods by optimizing complex DNNs with over 100 layers and performing oblivious inference in the Billion-operation regime for the challenging ImageNet dataset. Our framework is available at https://github.com/ACESLabUCSD/COINN.git.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信