基于深度学习的衰落信道1位ADC收发器

Metasebia D. Gemeda, Minsig Han, A. T. Abebe, C. G. Kang
{"title":"基于深度学习的衰落信道1位ADC收发器","authors":"Metasebia D. Gemeda, Minsig Han, A. T. Abebe, C. G. Kang","doi":"10.1109/ICCCN58024.2023.10230206","DOIUrl":null,"url":null,"abstract":"To tackle the power consumption challenges in terahertz band wireless communication, this study proposes a deep learning-driven approach for transceiver design that utilizes one-bit quantization and oversampling at the receiver. The solution also involves implementing Faster-than-Nyquist (FTN) transmission on a fading channel. Our approach employs a convolutional autoencoder (AE) to enable the transmission of higher-order modulation over a one-bit fading channel while utilizing pilots. By exploiting the AE transceiver, it is evident that performance in quantized communication has significantly improved for QPSK, 16-QAM, and 64-QAM modulation levels, approaching the theoretical lower bound for the corresponding modulation over additive white Gaussian noise (AWGN) channel. Furthermore, the study has explored how to use the robust error-correcting capabilities of the AE transceiver to boost spectral efficiency by increasing FTN rates without dire Bit-error-rate sacrifice.","PeriodicalId":132030,"journal":{"name":"2023 32nd International Conference on Computer Communications and Networks (ICCCN)","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning-based Transceiver with One-bit ADC Over Fading Channel\",\"authors\":\"Metasebia D. Gemeda, Minsig Han, A. T. Abebe, C. G. Kang\",\"doi\":\"10.1109/ICCCN58024.2023.10230206\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To tackle the power consumption challenges in terahertz band wireless communication, this study proposes a deep learning-driven approach for transceiver design that utilizes one-bit quantization and oversampling at the receiver. The solution also involves implementing Faster-than-Nyquist (FTN) transmission on a fading channel. Our approach employs a convolutional autoencoder (AE) to enable the transmission of higher-order modulation over a one-bit fading channel while utilizing pilots. By exploiting the AE transceiver, it is evident that performance in quantized communication has significantly improved for QPSK, 16-QAM, and 64-QAM modulation levels, approaching the theoretical lower bound for the corresponding modulation over additive white Gaussian noise (AWGN) channel. Furthermore, the study has explored how to use the robust error-correcting capabilities of the AE transceiver to boost spectral efficiency by increasing FTN rates without dire Bit-error-rate sacrifice.\",\"PeriodicalId\":132030,\"journal\":{\"name\":\"2023 32nd International Conference on Computer Communications and Networks (ICCCN)\",\"volume\":\"74 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 32nd International Conference on Computer Communications and Networks (ICCCN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCCN58024.2023.10230206\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 32nd International Conference on Computer Communications and Networks (ICCCN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCCN58024.2023.10230206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决太赫兹频段无线通信中的功耗挑战,本研究提出了一种深度学习驱动的收发器设计方法,该方法在接收器上利用1位量化和过采样。该解决方案还涉及在衰落信道上实现比奈奎斯特(FTN)更快的传输。我们的方法采用卷积自编码器(AE),在利用导频的情况下,在1位衰落信道上传输高阶调制。通过利用声发射收发器,QPSK、16-QAM和64-QAM调制电平的量化通信性能明显提高,接近加性高斯白噪声(AWGN)信道上相应调制的理论下界。此外,该研究还探索了如何利用AE收发器的鲁棒纠错能力,在不牺牲误码率的情况下,通过提高FTN速率来提高频谱效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning-based Transceiver with One-bit ADC Over Fading Channel
To tackle the power consumption challenges in terahertz band wireless communication, this study proposes a deep learning-driven approach for transceiver design that utilizes one-bit quantization and oversampling at the receiver. The solution also involves implementing Faster-than-Nyquist (FTN) transmission on a fading channel. Our approach employs a convolutional autoencoder (AE) to enable the transmission of higher-order modulation over a one-bit fading channel while utilizing pilots. By exploiting the AE transceiver, it is evident that performance in quantized communication has significantly improved for QPSK, 16-QAM, and 64-QAM modulation levels, approaching the theoretical lower bound for the corresponding modulation over additive white Gaussian noise (AWGN) channel. Furthermore, the study has explored how to use the robust error-correcting capabilities of the AE transceiver to boost spectral efficiency by increasing FTN rates without dire Bit-error-rate sacrifice.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信