大脑封闭术

Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, Junehwa Song
{"title":"大脑封闭术","authors":"Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, Junehwa Song","doi":"10.1145/3300061.3345447","DOIUrl":null,"url":null,"abstract":"Deep-learning (DL) is receiving huge attention as enabling techniques for emerging mobile and IoT applications. It is a common practice to conduct DNN model-based inference using cloud services due to their high computation and memory cost. However, such a cloud-offloaded inference raises serious privacy concerns. Malicious external attackers or untrustworthy internal administrators of clouds may leak highly sensitive and private data such as image, voice and textual data. In this paper, we propose Occlumency, a novel cloud-driven solution designed to protect user privacy without compromising the benefit of using powerful cloud resources. Occlumency leverages secure SGX enclave to preserve the confidentiality and the integrity of user data throughout the entire DL inference process. DL inference in SGX enclave, however, impose a severe performance degradation due to limited physical memory space and inefficient page swapping. We designed a suite of novel techniques to accelerate DL inference inside the enclave with a limited memory size and implemented Occlumency based on Caffe. Our experiment with various DNN models shows that Occlumency improves inference speed by 3.6x compared to the baseline DL inference in SGX and achieves a secure DL inference within 72% of latency overhead compared to inference in the native environment.","PeriodicalId":223523,"journal":{"name":"The 25th Annual International Conference on Mobile Computing and Networking","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"Occlumency\",\"authors\":\"Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, Junehwa Song\",\"doi\":\"10.1145/3300061.3345447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep-learning (DL) is receiving huge attention as enabling techniques for emerging mobile and IoT applications. It is a common practice to conduct DNN model-based inference using cloud services due to their high computation and memory cost. However, such a cloud-offloaded inference raises serious privacy concerns. Malicious external attackers or untrustworthy internal administrators of clouds may leak highly sensitive and private data such as image, voice and textual data. In this paper, we propose Occlumency, a novel cloud-driven solution designed to protect user privacy without compromising the benefit of using powerful cloud resources. Occlumency leverages secure SGX enclave to preserve the confidentiality and the integrity of user data throughout the entire DL inference process. DL inference in SGX enclave, however, impose a severe performance degradation due to limited physical memory space and inefficient page swapping. We designed a suite of novel techniques to accelerate DL inference inside the enclave with a limited memory size and implemented Occlumency based on Caffe. Our experiment with various DNN models shows that Occlumency improves inference speed by 3.6x compared to the baseline DL inference in SGX and achieves a secure DL inference within 72% of latency overhead compared to inference in the native environment.\",\"PeriodicalId\":223523,\"journal\":{\"name\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 25th Annual International Conference on Mobile Computing and Networking\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3300061.3345447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 25th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3300061.3345447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Occlumency
Deep-learning (DL) is receiving huge attention as enabling techniques for emerging mobile and IoT applications. It is a common practice to conduct DNN model-based inference using cloud services due to their high computation and memory cost. However, such a cloud-offloaded inference raises serious privacy concerns. Malicious external attackers or untrustworthy internal administrators of clouds may leak highly sensitive and private data such as image, voice and textual data. In this paper, we propose Occlumency, a novel cloud-driven solution designed to protect user privacy without compromising the benefit of using powerful cloud resources. Occlumency leverages secure SGX enclave to preserve the confidentiality and the integrity of user data throughout the entire DL inference process. DL inference in SGX enclave, however, impose a severe performance degradation due to limited physical memory space and inefficient page swapping. We designed a suite of novel techniques to accelerate DL inference inside the enclave with a limited memory size and implemented Occlumency based on Caffe. Our experiment with various DNN models shows that Occlumency improves inference speed by 3.6x compared to the baseline DL inference in SGX and achieves a secure DL inference within 72% of latency overhead compared to inference in the native environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信