SETmap:一种用于FPGA低功耗设计的软容错映射算法

Chi-Chen Peng, Chen Dong, Deming Chen
{"title":"SETmap:一种用于FPGA低功耗设计的软容错映射算法","authors":"Chi-Chen Peng, Chen Dong, Deming Chen","doi":"10.1109/ASPDAC.2011.5722219","DOIUrl":null,"url":null,"abstract":"Field programmable gate arrays (FPGAs) are widely used in VLSI applications due to their flexibility to implement logical functions, fast total turn-around time and low none-recurring engineering cost. SRAM-based FPGAs are the most popular FPGAs in the market. However, as process technologies advance to nanometer-scale regime, the issue of reliability of devices becomes critical. Soft errors are increasingly becoming a reliability concern because of the shrinking process dimensions. In this paper we study the technology mapping problem for FPGA circuits to reduce the occurrence of soft errors under the chip performance constraint and power reduction. Compared to two power-optimization mapping algorithms, SVmap [17] and Emap [15] respectively, we reduce the soft error rate by 40.6% with a 2.22% power overhead and 48.0% with a 2.18% power overhead using 6-LUTs.","PeriodicalId":316253,"journal":{"name":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"SETmap: A soft error tolerant mapping algorithm for FPGA designs with low power\",\"authors\":\"Chi-Chen Peng, Chen Dong, Deming Chen\",\"doi\":\"10.1109/ASPDAC.2011.5722219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Field programmable gate arrays (FPGAs) are widely used in VLSI applications due to their flexibility to implement logical functions, fast total turn-around time and low none-recurring engineering cost. SRAM-based FPGAs are the most popular FPGAs in the market. However, as process technologies advance to nanometer-scale regime, the issue of reliability of devices becomes critical. Soft errors are increasingly becoming a reliability concern because of the shrinking process dimensions. In this paper we study the technology mapping problem for FPGA circuits to reduce the occurrence of soft errors under the chip performance constraint and power reduction. Compared to two power-optimization mapping algorithms, SVmap [17] and Emap [15] respectively, we reduce the soft error rate by 40.6% with a 2.22% power overhead and 48.0% with a 2.18% power overhead using 6-LUTs.\",\"PeriodicalId\":316253,\"journal\":{\"name\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2011.5722219\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"16th Asia and South Pacific Design Automation Conference (ASP-DAC 2011)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2011.5722219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现场可编程门阵列(fpga)由于其实现逻辑功能的灵活性、快速的总周转时间和较低的非重复性工程成本而广泛应用于VLSI应用中。基于sram的fpga是市场上最流行的fpga。然而,随着工艺技术发展到纳米级,器件的可靠性问题变得至关重要。由于工艺尺寸的不断缩小,软误差日益成为可靠性问题。在芯片性能约束和功耗降低的前提下,研究FPGA电路的技术映射问题,以减少软误差的发生。与两种功率优化映射算法SVmap[17]和Emap[15]相比,我们使用6- lut将软错误率降低了40.6%,功耗开销为2.22%,而使用6- lut将软错误率降低了48.0%,功耗开销为2.18%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SETmap: A soft error tolerant mapping algorithm for FPGA designs with low power
Field programmable gate arrays (FPGAs) are widely used in VLSI applications due to their flexibility to implement logical functions, fast total turn-around time and low none-recurring engineering cost. SRAM-based FPGAs are the most popular FPGAs in the market. However, as process technologies advance to nanometer-scale regime, the issue of reliability of devices becomes critical. Soft errors are increasingly becoming a reliability concern because of the shrinking process dimensions. In this paper we study the technology mapping problem for FPGA circuits to reduce the occurrence of soft errors under the chip performance constraint and power reduction. Compared to two power-optimization mapping algorithms, SVmap [17] and Emap [15] respectively, we reduce the soft error rate by 40.6% with a 2.22% power overhead and 48.0% with a 2.18% power overhead using 6-LUTs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信