Jean Bégaint, Franck Galpin, P. Guillotel, C. Guillemot
{"title":"视频压缩的深帧插值","authors":"Jean Bégaint, Franck Galpin, P. Guillotel, C. Guillemot","doi":"10.1109/DCC.2019.00068","DOIUrl":null,"url":null,"abstract":"Deep neural networks have been recently proposed to solve video interpolation tasks. Given a past and future frame, such networks can be trained to successfully predict the intermediate frame(s). In the context of video compression, these architectures could be useful as an additional inter-prediction mode. Current inter-prediction methods rely on block-matching techniques to estimate the motion between consecutive frames. This approach has severe limitations for handling complex non-translational motions, and is still limited to block-based motion vectors. This paper presents a deep frame interpolation network for video compression aiming at solving the previous limitations, i.e. able to cope with all types of geometrical deformations by providing a dense motion compensation. Experiments with the classical bi-directional hierarchical video coding structure demonstrate the efficiency of the proposed approach over the traditional tools of the HEVC codec.","PeriodicalId":167723,"journal":{"name":"2019 Data Compression Conference (DCC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Deep Frame Interpolation for Video Compression\",\"authors\":\"Jean Bégaint, Franck Galpin, P. Guillotel, C. Guillemot\",\"doi\":\"10.1109/DCC.2019.00068\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks have been recently proposed to solve video interpolation tasks. Given a past and future frame, such networks can be trained to successfully predict the intermediate frame(s). In the context of video compression, these architectures could be useful as an additional inter-prediction mode. Current inter-prediction methods rely on block-matching techniques to estimate the motion between consecutive frames. This approach has severe limitations for handling complex non-translational motions, and is still limited to block-based motion vectors. This paper presents a deep frame interpolation network for video compression aiming at solving the previous limitations, i.e. able to cope with all types of geometrical deformations by providing a dense motion compensation. Experiments with the classical bi-directional hierarchical video coding structure demonstrate the efficiency of the proposed approach over the traditional tools of the HEVC codec.\",\"PeriodicalId\":167723,\"journal\":{\"name\":\"2019 Data Compression Conference (DCC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Data Compression Conference (DCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2019.00068\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Data Compression Conference (DCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2019.00068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep neural networks have been recently proposed to solve video interpolation tasks. Given a past and future frame, such networks can be trained to successfully predict the intermediate frame(s). In the context of video compression, these architectures could be useful as an additional inter-prediction mode. Current inter-prediction methods rely on block-matching techniques to estimate the motion between consecutive frames. This approach has severe limitations for handling complex non-translational motions, and is still limited to block-based motion vectors. This paper presents a deep frame interpolation network for video compression aiming at solving the previous limitations, i.e. able to cope with all types of geometrical deformations by providing a dense motion compensation. Experiments with the classical bi-directional hierarchical video coding structure demonstrate the efficiency of the proposed approach over the traditional tools of the HEVC codec.