P. Rutkowski, Monika Konatowska, Tomasz S. Wajsowicz
{"title":"长期电导率测量作为树木生命周期知识的来源","authors":"P. Rutkowski, Monika Konatowska, Tomasz S. Wajsowicz","doi":"10.31038/gems.2020223","DOIUrl":null,"url":null,"abstract":"The underlying physiological processes for tree activities in winter are still unclear, and changes occurring the growing season have been observed mainly on the basis of tedious phenological research. Devices, constructed and tested in a 3-year cycle by the Department of Forest Sites and Ecology, allows for tracking the activity of a tree throughout the year by using integrated measurements of conductivity, temperature and air humidity. That can be tracked online (see web site https://thingspeak.com/channels/698713). Observations on the impacts to four tree species ( Acer pseudoplatanus , Alnus glutinosa , Carpinus betulus , Fagus sylvatica ), were made for when temperatures fall below 0°C, during the spring activity phase, during the maximum of summer activity and during the autumn decline in activity. Thanks to the conductivity measurement method, tracking the activity of the trees year-round is easy. The sensors showed that the trees were active (although at a low level) during the winter; the real dormancy period was noted when the air temperature dropped below – 5.7 C o . For some temperature values, the conductivity is inhibited both in winter and in summer. The described method in this paper of measuring the conductivity of a tree may be very useful for future research related to trees, phenology, climate change and other ecological research. It can also be used as a utility tool that may, for example, be of interest to producers of maple syrup, as it indicates the moment when trees enter the phase of its most intensive production.","PeriodicalId":328860,"journal":{"name":"Geology, Earth & Marine Sciences","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Term Conductivity Measurements as a Source of Knowledge about Tree Life Cycles\",\"authors\":\"P. Rutkowski, Monika Konatowska, Tomasz S. Wajsowicz\",\"doi\":\"10.31038/gems.2020223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The underlying physiological processes for tree activities in winter are still unclear, and changes occurring the growing season have been observed mainly on the basis of tedious phenological research. Devices, constructed and tested in a 3-year cycle by the Department of Forest Sites and Ecology, allows for tracking the activity of a tree throughout the year by using integrated measurements of conductivity, temperature and air humidity. That can be tracked online (see web site https://thingspeak.com/channels/698713). Observations on the impacts to four tree species ( Acer pseudoplatanus , Alnus glutinosa , Carpinus betulus , Fagus sylvatica ), were made for when temperatures fall below 0°C, during the spring activity phase, during the maximum of summer activity and during the autumn decline in activity. Thanks to the conductivity measurement method, tracking the activity of the trees year-round is easy. The sensors showed that the trees were active (although at a low level) during the winter; the real dormancy period was noted when the air temperature dropped below – 5.7 C o . For some temperature values, the conductivity is inhibited both in winter and in summer. The described method in this paper of measuring the conductivity of a tree may be very useful for future research related to trees, phenology, climate change and other ecological research. It can also be used as a utility tool that may, for example, be of interest to producers of maple syrup, as it indicates the moment when trees enter the phase of its most intensive production.\",\"PeriodicalId\":328860,\"journal\":{\"name\":\"Geology, Earth & Marine Sciences\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geology, Earth & Marine Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31038/gems.2020223\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geology, Earth & Marine Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31038/gems.2020223","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Long-Term Conductivity Measurements as a Source of Knowledge about Tree Life Cycles
The underlying physiological processes for tree activities in winter are still unclear, and changes occurring the growing season have been observed mainly on the basis of tedious phenological research. Devices, constructed and tested in a 3-year cycle by the Department of Forest Sites and Ecology, allows for tracking the activity of a tree throughout the year by using integrated measurements of conductivity, temperature and air humidity. That can be tracked online (see web site https://thingspeak.com/channels/698713). Observations on the impacts to four tree species ( Acer pseudoplatanus , Alnus glutinosa , Carpinus betulus , Fagus sylvatica ), were made for when temperatures fall below 0°C, during the spring activity phase, during the maximum of summer activity and during the autumn decline in activity. Thanks to the conductivity measurement method, tracking the activity of the trees year-round is easy. The sensors showed that the trees were active (although at a low level) during the winter; the real dormancy period was noted when the air temperature dropped below – 5.7 C o . For some temperature values, the conductivity is inhibited both in winter and in summer. The described method in this paper of measuring the conductivity of a tree may be very useful for future research related to trees, phenology, climate change and other ecological research. It can also be used as a utility tool that may, for example, be of interest to producers of maple syrup, as it indicates the moment when trees enter the phase of its most intensive production.