基于情感数据集的脑电图人物识别CNN-SVM方法

S. B. Salem, Z. Lachiri
{"title":"基于情感数据集的脑电图人物识别CNN-SVM方法","authors":"S. B. Salem, Z. Lachiri","doi":"10.1109/SCC47175.2019.9116175","DOIUrl":null,"url":null,"abstract":"The potential of brain electrical activity elicited by a set of emotional stimulation is investigated in this paper to build a biometric identification system based on electroencephalogram (EEG). Deep learning method such as Convolutional neural network (CNN) is used to extract unique neural features from EEG signals knowing that the brain signature is a repeatable discriminative characteristic, then features are classified with polynomial kernel function Support Vector Machine (SVM). Participants are presented, in the database, with 20 emotional videos stimuli and 32 electrodes were primarily, employed for this research. Our biometric system can achieve 99.99% identification accuracy depending on the employed configuration furthermore, results conclude that 5-channels EEG data (PO3, PO4, O1, Oz, O2) filtered in Beta frequency range [14 – 30] Hz carry the most discriminative information appropriate to biometric brain traits.","PeriodicalId":133593,"journal":{"name":"2019 International Conference on Signal, Control and Communication (SCC)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"CNN-SVM approach for EEG-Based Person Identification using Emotional dataset\",\"authors\":\"S. B. Salem, Z. Lachiri\",\"doi\":\"10.1109/SCC47175.2019.9116175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The potential of brain electrical activity elicited by a set of emotional stimulation is investigated in this paper to build a biometric identification system based on electroencephalogram (EEG). Deep learning method such as Convolutional neural network (CNN) is used to extract unique neural features from EEG signals knowing that the brain signature is a repeatable discriminative characteristic, then features are classified with polynomial kernel function Support Vector Machine (SVM). Participants are presented, in the database, with 20 emotional videos stimuli and 32 electrodes were primarily, employed for this research. Our biometric system can achieve 99.99% identification accuracy depending on the employed configuration furthermore, results conclude that 5-channels EEG data (PO3, PO4, O1, Oz, O2) filtered in Beta frequency range [14 – 30] Hz carry the most discriminative information appropriate to biometric brain traits.\",\"PeriodicalId\":133593,\"journal\":{\"name\":\"2019 International Conference on Signal, Control and Communication (SCC)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Signal, Control and Communication (SCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SCC47175.2019.9116175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Signal, Control and Communication (SCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCC47175.2019.9116175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

为了建立基于脑电图(EEG)的生物识别系统,研究了一组情绪刺激引发的脑电活动电位。利用卷积神经网络(CNN)等深度学习方法,将脑特征作为可重复的判别特征,从脑电信号中提取唯一的神经特征,然后利用多项式核函数支持向量机(SVM)对特征进行分类。在数据库中,参与者被展示了20个情绪视频刺激和32个电极,主要用于这项研究。实验结果表明,在β频率[14 - 30]Hz范围内滤波后的5通道EEG数据(PO3、PO4、O1、Oz、O2)携带了最适合生物特征脑特征的判别信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CNN-SVM approach for EEG-Based Person Identification using Emotional dataset
The potential of brain electrical activity elicited by a set of emotional stimulation is investigated in this paper to build a biometric identification system based on electroencephalogram (EEG). Deep learning method such as Convolutional neural network (CNN) is used to extract unique neural features from EEG signals knowing that the brain signature is a repeatable discriminative characteristic, then features are classified with polynomial kernel function Support Vector Machine (SVM). Participants are presented, in the database, with 20 emotional videos stimuli and 32 electrodes were primarily, employed for this research. Our biometric system can achieve 99.99% identification accuracy depending on the employed configuration furthermore, results conclude that 5-channels EEG data (PO3, PO4, O1, Oz, O2) filtered in Beta frequency range [14 – 30] Hz carry the most discriminative information appropriate to biometric brain traits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信