{"title":"图挖掘技术:着重于区分真实图和合成图","authors":"A. P. Appel, C. Faloutsos, C. Traina","doi":"10.4018/978-1-61350-053-8.ch010","DOIUrl":null,"url":null,"abstract":"Graphs appear in several settings, like social networks, recommendation systems, computer communication networks, gene/protein biological networks, among others. A large amount of graph patterns, as well as graph generator models that mimic such patterns have been proposed over the last years. However, a deep and recurring question still remains: “What is a good pattern?” The answer is related to finding a pattern or a tool able to help distinguishing between actual real-world and fake graphs. Here we explore the ability of ShatterPlots, a simple and powerful algorithm to tease out patterns of real graphs, helping us to spot fake/masked graphs. The idea is to force a graph to reach a critical (“Shattering”) point, randomly deleting edges, and study its properties at that point.","PeriodicalId":227251,"journal":{"name":"Graph Data Management","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Graph Mining Techniques: Focusing on discriminating between real and synthetic graphs\",\"authors\":\"A. P. Appel, C. Faloutsos, C. Traina\",\"doi\":\"10.4018/978-1-61350-053-8.ch010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphs appear in several settings, like social networks, recommendation systems, computer communication networks, gene/protein biological networks, among others. A large amount of graph patterns, as well as graph generator models that mimic such patterns have been proposed over the last years. However, a deep and recurring question still remains: “What is a good pattern?” The answer is related to finding a pattern or a tool able to help distinguishing between actual real-world and fake graphs. Here we explore the ability of ShatterPlots, a simple and powerful algorithm to tease out patterns of real graphs, helping us to spot fake/masked graphs. The idea is to force a graph to reach a critical (“Shattering”) point, randomly deleting edges, and study its properties at that point.\",\"PeriodicalId\":227251,\"journal\":{\"name\":\"Graph Data Management\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graph Data Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-61350-053-8.ch010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graph Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-053-8.ch010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Graph Mining Techniques: Focusing on discriminating between real and synthetic graphs
Graphs appear in several settings, like social networks, recommendation systems, computer communication networks, gene/protein biological networks, among others. A large amount of graph patterns, as well as graph generator models that mimic such patterns have been proposed over the last years. However, a deep and recurring question still remains: “What is a good pattern?” The answer is related to finding a pattern or a tool able to help distinguishing between actual real-world and fake graphs. Here we explore the ability of ShatterPlots, a simple and powerful algorithm to tease out patterns of real graphs, helping us to spot fake/masked graphs. The idea is to force a graph to reach a critical (“Shattering”) point, randomly deleting edges, and study its properties at that point.