n维空间中关于k度规的拟共形调和映射的双lipschitz性

Shadia Shalandi
{"title":"n维空间中关于k度规的拟共形调和映射的双lipschitz性","authors":"Shadia Shalandi","doi":"10.2298/PIM1716085S","DOIUrl":null,"url":null,"abstract":"We explore conditions which guarantee bi-Lipschitzity of harmonic quasiconformal maps with respect to k-metric. We prove that harmonic k-quasiconformal maps with nonzero Jacobian between any two domains in Rn are bi-Lipschitz with respect to k-metric, and prove the converse too.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bi-Lipschitzity of quasiconformal harmonic mappings in n-dimensional space with respect to k-metric\",\"authors\":\"Shadia Shalandi\",\"doi\":\"10.2298/PIM1716085S\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We explore conditions which guarantee bi-Lipschitzity of harmonic quasiconformal maps with respect to k-metric. We prove that harmonic k-quasiconformal maps with nonzero Jacobian between any two domains in Rn are bi-Lipschitz with respect to k-metric, and prove the converse too.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM1716085S\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM1716085S","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们探讨了关于k-度量的调和拟共形映射的双lipschitz性的保证条件。证明了Rn中任意两个域间具有非零雅可比矩阵的调和k-拟共形映射是关于k-度规的双lipschitz映射,并证明了相反的情形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bi-Lipschitzity of quasiconformal harmonic mappings in n-dimensional space with respect to k-metric
We explore conditions which guarantee bi-Lipschitzity of harmonic quasiconformal maps with respect to k-metric. We prove that harmonic k-quasiconformal maps with nonzero Jacobian between any two domains in Rn are bi-Lipschitz with respect to k-metric, and prove the converse too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信