耦合问题的算子分裂方法:输运和麦克斯韦方程

J. Geiser
{"title":"耦合问题的算子分裂方法:输运和麦克斯韦方程","authors":"J. Geiser","doi":"10.4236/ajcm.2011.13019","DOIUrl":null,"url":null,"abstract":"In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to improve the standard discretization schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport equation.","PeriodicalId":359476,"journal":{"name":"Am. J. Comput. Math.","volume":"205 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Operator Splitting Method for Coupled Problems: Transport and Maxwell Equations\",\"authors\":\"J. Geiser\",\"doi\":\"10.4236/ajcm.2011.13019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to improve the standard discretization schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport equation.\",\"PeriodicalId\":359476,\"journal\":{\"name\":\"Am. J. Comput. Math.\",\"volume\":\"205 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Am. J. Comput. Math.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/ajcm.2011.13019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Am. J. Comput. Math.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/ajcm.2011.13019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文考虑了一种新的方法来实现受电场影响的输运问题的算子分裂方法。我们的动机是模拟PE-CVD(等离子体增强化学气相沉积)过程,这意味着物质流向气相,受到电场的影响。我们可以用波动方程来模拟这样的场。主要贡献是改进了耦合方程各部分的标准离散化格式。因此,我们讨论了用隐式Runge- Kutta方法代替Yee算法的改进方法。进一步在麦克斯韦方程和输运方程之间平衡求解方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator Splitting Method for Coupled Problems: Transport and Maxwell Equations
In this article a new approach is considered for implementing operator splitting methods for transport problems, influenced by electric fields. Our motivation came to model PE-CVD (plasma-enhanced chemical vapor deposition) processes, means the flow of species to a gas-phase, which are influenced by an electric field. Such a field we can model by wave equations. The main contributions are to improve the standard discretization schemes of each part of the coupling equation. So we discuss an improvement with implicit Runge- Kutta methods instead of the Yee’s algorithm. Further we balance the solver method between the Maxwell and Transport equation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信