{"title":"基于离散随机梯度算法的多中继合作MIMO系统MMSE发射分集选择","authors":"P. Clarke, R. D. Lamare","doi":"10.1109/ICDSP.2011.6004898","DOIUrl":null,"url":null,"abstract":"This paper presents a set of transmit diversity selection algorithms based on discrete stochastic optimization for a two-phase, decode-and-forward, multi-relay cooperative MIMO system with a non-negligible direct path. Transmit diversity selection is performed jointly with channel estimation using discrete stochastic and continuous least squares optimization, respectively. Linear minimum mean square error receivers are used at the relay and destination nodes whilst no forward channel knowledge, precoding or inter-relay communication is required. Sets of candidate transmit diversity selections are generated and methods to optimize the selection whilst avoiding exhaustive searching are presented. The benefits of reducing the cardinality of these sets is shown and the performance of the proposed schemes are assessed via mean square error, bit-error rate and complexity comparisons. The performance and diversity achieved is shown to exceed that of standard multi-relay cooperative MIMO systems and random transmit diversity selection, and closely match that of the exhaustive solution.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"88 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"MMSE transmit diversity selection for multi-relay cooperative MIMO systems using discrete stochastic gradient algorithms\",\"authors\":\"P. Clarke, R. D. Lamare\",\"doi\":\"10.1109/ICDSP.2011.6004898\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a set of transmit diversity selection algorithms based on discrete stochastic optimization for a two-phase, decode-and-forward, multi-relay cooperative MIMO system with a non-negligible direct path. Transmit diversity selection is performed jointly with channel estimation using discrete stochastic and continuous least squares optimization, respectively. Linear minimum mean square error receivers are used at the relay and destination nodes whilst no forward channel knowledge, precoding or inter-relay communication is required. Sets of candidate transmit diversity selections are generated and methods to optimize the selection whilst avoiding exhaustive searching are presented. The benefits of reducing the cardinality of these sets is shown and the performance of the proposed schemes are assessed via mean square error, bit-error rate and complexity comparisons. The performance and diversity achieved is shown to exceed that of standard multi-relay cooperative MIMO systems and random transmit diversity selection, and closely match that of the exhaustive solution.\",\"PeriodicalId\":360702,\"journal\":{\"name\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"volume\":\"88 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 17th International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2011.6004898\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6004898","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MMSE transmit diversity selection for multi-relay cooperative MIMO systems using discrete stochastic gradient algorithms
This paper presents a set of transmit diversity selection algorithms based on discrete stochastic optimization for a two-phase, decode-and-forward, multi-relay cooperative MIMO system with a non-negligible direct path. Transmit diversity selection is performed jointly with channel estimation using discrete stochastic and continuous least squares optimization, respectively. Linear minimum mean square error receivers are used at the relay and destination nodes whilst no forward channel knowledge, precoding or inter-relay communication is required. Sets of candidate transmit diversity selections are generated and methods to optimize the selection whilst avoiding exhaustive searching are presented. The benefits of reducing the cardinality of these sets is shown and the performance of the proposed schemes are assessed via mean square error, bit-error rate and complexity comparisons. The performance and diversity achieved is shown to exceed that of standard multi-relay cooperative MIMO systems and random transmit diversity selection, and closely match that of the exhaustive solution.