基于强化学习系统和cmac的电动轮椅自动行走系统的开发

R. Kurozumi, S. Fujisawa, T. Yamamoto, Y. Suita
{"title":"基于强化学习系统和cmac的电动轮椅自动行走系统的开发","authors":"R. Kurozumi, S. Fujisawa, T. Yamamoto, Y. Suita","doi":"10.1109/IJCNN.2002.1007772","DOIUrl":null,"url":null,"abstract":"The existing method for establishing travel routes provides modeled environmental information, but it is difficult to create an environment model for the environments where electric wheelchairs travel because the environment changes constantly due to the existence of moving objects including pedestrians. In this study, we propose an automatic travelling system for an electric wheelchair using reinforcement learning systems and CMACs. We select the best travel route by utilizing these reinforcement learning systems. When a CMAC learns the value function of Q-learning, an improved learning speed is achieved by utilizing the generalizing action. CMACs enable one to reduce the time needed to select the best travel route. Using simulation, a path planning experiment was performed.","PeriodicalId":382771,"journal":{"name":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of an automatic travel system for electric wheelchairs using reinforcement learning systems and CMACs\",\"authors\":\"R. Kurozumi, S. Fujisawa, T. Yamamoto, Y. Suita\",\"doi\":\"10.1109/IJCNN.2002.1007772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The existing method for establishing travel routes provides modeled environmental information, but it is difficult to create an environment model for the environments where electric wheelchairs travel because the environment changes constantly due to the existence of moving objects including pedestrians. In this study, we propose an automatic travelling system for an electric wheelchair using reinforcement learning systems and CMACs. We select the best travel route by utilizing these reinforcement learning systems. When a CMAC learns the value function of Q-learning, an improved learning speed is achieved by utilizing the generalizing action. CMACs enable one to reduce the time needed to select the best travel route. Using simulation, a path planning experiment was performed.\",\"PeriodicalId\":382771,\"journal\":{\"name\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2002.1007772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.02CH37290)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2002.1007772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

现有的建立出行路线的方法提供了模型化的环境信息,但由于包括行人在内的移动物体的存在,环境会不断变化,因此很难建立电动轮椅行驶环境的环境模型。在这项研究中,我们提出了一个使用强化学习系统和cmac的电动轮椅自动行驶系统。我们通过使用这些强化学习系统来选择最佳的旅行路线。当CMAC学习Q-learning的值函数时,利用泛化作用提高了学习速度。cmac使人们能够减少选择最佳旅行路线所需的时间。通过仿真,进行了路径规划实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Development of an automatic travel system for electric wheelchairs using reinforcement learning systems and CMACs
The existing method for establishing travel routes provides modeled environmental information, but it is difficult to create an environment model for the environments where electric wheelchairs travel because the environment changes constantly due to the existence of moving objects including pedestrians. In this study, we propose an automatic travelling system for an electric wheelchair using reinforcement learning systems and CMACs. We select the best travel route by utilizing these reinforcement learning systems. When a CMAC learns the value function of Q-learning, an improved learning speed is achieved by utilizing the generalizing action. CMACs enable one to reduce the time needed to select the best travel route. Using simulation, a path planning experiment was performed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信