基于最大熵原理和HSV色彩空间的脑膜瘤病理图像阳性细胞自动提取

V. Anari, P. Mahzouni, R. Amirfattahi
{"title":"基于最大熵原理和HSV色彩空间的脑膜瘤病理图像阳性细胞自动提取","authors":"V. Anari, P. Mahzouni, R. Amirfattahi","doi":"10.1109/IRANIANMVIP.2010.5941150","DOIUrl":null,"url":null,"abstract":"This paper describes a computer-aided system for analyzing immunohistochemically stained meningioma cancer cell images. Accurate segmentation of cells in such images plays a critical role in diagnosing diffrent type of meningioma cancer. The methodpresented to automatically extract the positive cells in meninigioma tumor immunohistochemical pathology images based on HSV color space. First, according to distribution rules of positive cells in the HSV color space, it uses the component H, S and V as threshold conditions and leverages the maximal entropy principle to build a model to segment and extract positive cells. Experimental results shows that proposed algorithm can be used by pathologist to detection reliable quantitatively analyze the parameter of tumor cells and over come to disadvantages of the traditional approach.","PeriodicalId":350778,"journal":{"name":"2010 6th Iranian Conference on Machine Vision and Image Processing","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Automatic extraction of positive cells in pathology images of meningioma based on the maximal entropy principle and HSV color space\",\"authors\":\"V. Anari, P. Mahzouni, R. Amirfattahi\",\"doi\":\"10.1109/IRANIANMVIP.2010.5941150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a computer-aided system for analyzing immunohistochemically stained meningioma cancer cell images. Accurate segmentation of cells in such images plays a critical role in diagnosing diffrent type of meningioma cancer. The methodpresented to automatically extract the positive cells in meninigioma tumor immunohistochemical pathology images based on HSV color space. First, according to distribution rules of positive cells in the HSV color space, it uses the component H, S and V as threshold conditions and leverages the maximal entropy principle to build a model to segment and extract positive cells. Experimental results shows that proposed algorithm can be used by pathologist to detection reliable quantitatively analyze the parameter of tumor cells and over come to disadvantages of the traditional approach.\",\"PeriodicalId\":350778,\"journal\":{\"name\":\"2010 6th Iranian Conference on Machine Vision and Image Processing\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 6th Iranian Conference on Machine Vision and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRANIANMVIP.2010.5941150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 6th Iranian Conference on Machine Vision and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRANIANMVIP.2010.5941150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文描述了一种用于分析免疫组织化学染色脑膜瘤癌细胞图像的计算机辅助系统。影像中细胞的准确分割对不同类型脑膜瘤癌的诊断具有重要作用。提出了一种基于HSV颜色空间的脑膜瘤免疫组化病理图像阳性细胞自动提取方法。首先,根据阳性细胞在HSV色彩空间中的分布规律,以H、S、V分量为阈值条件,利用最大熵原理建立模型,对阳性细胞进行分割和提取;实验结果表明,该算法可用于病理学家对肿瘤细胞参数进行可靠的定量检测,克服了传统方法的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic extraction of positive cells in pathology images of meningioma based on the maximal entropy principle and HSV color space
This paper describes a computer-aided system for analyzing immunohistochemically stained meningioma cancer cell images. Accurate segmentation of cells in such images plays a critical role in diagnosing diffrent type of meningioma cancer. The methodpresented to automatically extract the positive cells in meninigioma tumor immunohistochemical pathology images based on HSV color space. First, according to distribution rules of positive cells in the HSV color space, it uses the component H, S and V as threshold conditions and leverages the maximal entropy principle to build a model to segment and extract positive cells. Experimental results shows that proposed algorithm can be used by pathologist to detection reliable quantitatively analyze the parameter of tumor cells and over come to disadvantages of the traditional approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信