Yusen He, F. Fei, Wenbo Wang, Xuan Song, Zhiyu Sun, Stephen Seung-Yeob Baek
{"title":"通过卷积编码器-解码器网络预测投影微立体光刻工艺的制造形状","authors":"Yusen He, F. Fei, Wenbo Wang, Xuan Song, Zhiyu Sun, Stephen Seung-Yeob Baek","doi":"10.1115/DETC2018-85458","DOIUrl":null,"url":null,"abstract":"Projection micro-stereolithography (P-μSLA) processes have been widely utilized in three-dimensional (3D) digital fabrication. However, various uncertainties of a photopolymerization process often deteriorates the geometric accuracy of fabrication results. A predictive model that maps input shapes to actual outcomes in real-time would be immensely beneficial for designers and process engineers, permitting rapid design exploration through inexpensive trials-and-errors, such that optimal design parameters as well as optimal shape modification plan could be identified with only minimal waste of time, material, and labor. However, no computational model has ever succeeded in predicting such geometric inaccuracies to a reasonable precision. In this regard, we propose a novel idea of predicting output shapes from input projection patterns of a P-μSLA process via deep neural networks. To this end, a convolutional encoder-decoder network is proposed in this paper. The network takes a projection image as the input and returns a predicted shape after fabrication as the output. Cross-validation analyses showed the root-mean-square-error (RMSE) of 10.72 μm in average, indicating noticeable performance of the proposed convolutional encoder-decoder network.","PeriodicalId":338721,"journal":{"name":"Volume 1B: 38th Computers and Information in Engineering Conference","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Predicting Manufactured Shapes of a Projection Micro-Stereolithography Process via Convolutional Encoder-Decoder Networks\",\"authors\":\"Yusen He, F. Fei, Wenbo Wang, Xuan Song, Zhiyu Sun, Stephen Seung-Yeob Baek\",\"doi\":\"10.1115/DETC2018-85458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Projection micro-stereolithography (P-μSLA) processes have been widely utilized in three-dimensional (3D) digital fabrication. However, various uncertainties of a photopolymerization process often deteriorates the geometric accuracy of fabrication results. A predictive model that maps input shapes to actual outcomes in real-time would be immensely beneficial for designers and process engineers, permitting rapid design exploration through inexpensive trials-and-errors, such that optimal design parameters as well as optimal shape modification plan could be identified with only minimal waste of time, material, and labor. However, no computational model has ever succeeded in predicting such geometric inaccuracies to a reasonable precision. In this regard, we propose a novel idea of predicting output shapes from input projection patterns of a P-μSLA process via deep neural networks. To this end, a convolutional encoder-decoder network is proposed in this paper. The network takes a projection image as the input and returns a predicted shape after fabrication as the output. Cross-validation analyses showed the root-mean-square-error (RMSE) of 10.72 μm in average, indicating noticeable performance of the proposed convolutional encoder-decoder network.\",\"PeriodicalId\":338721,\"journal\":{\"name\":\"Volume 1B: 38th Computers and Information in Engineering Conference\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1B: 38th Computers and Information in Engineering Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2018-85458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1B: 38th Computers and Information in Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2018-85458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Predicting Manufactured Shapes of a Projection Micro-Stereolithography Process via Convolutional Encoder-Decoder Networks
Projection micro-stereolithography (P-μSLA) processes have been widely utilized in three-dimensional (3D) digital fabrication. However, various uncertainties of a photopolymerization process often deteriorates the geometric accuracy of fabrication results. A predictive model that maps input shapes to actual outcomes in real-time would be immensely beneficial for designers and process engineers, permitting rapid design exploration through inexpensive trials-and-errors, such that optimal design parameters as well as optimal shape modification plan could be identified with only minimal waste of time, material, and labor. However, no computational model has ever succeeded in predicting such geometric inaccuracies to a reasonable precision. In this regard, we propose a novel idea of predicting output shapes from input projection patterns of a P-μSLA process via deep neural networks. To this end, a convolutional encoder-decoder network is proposed in this paper. The network takes a projection image as the input and returns a predicted shape after fabrication as the output. Cross-validation analyses showed the root-mean-square-error (RMSE) of 10.72 μm in average, indicating noticeable performance of the proposed convolutional encoder-decoder network.