面向mooc的自适应同伴评估

N. Capuano, S. Caballé
{"title":"面向mooc的自适应同伴评估","authors":"N. Capuano, S. Caballé","doi":"10.1109/3PGCIC.2015.7","DOIUrl":null,"url":null,"abstract":"The increase in popularity of Massive Open Online Courses (MOOCs) requires the resolution of new issues related to the huge number of participants to such courses. Among the main challenges is the difficulty in students' assessment, especially for complex assignments, such as essays or open-ended exercises, which is limited by the ability of teachers to evaluate and provide feedback at large scale. A feasible approach to tackle this problem is peer assessment, in which students also play the role of assessor for assignments submitted by others. Unfortunately, as students may have different expertise, peer assessment often does not deliver accurate results compared to human experts. In this paper, we describe and compare different methods aimed at mitigating this issue by adaptively combining peer grades on the basis of the detected expertise of the assessors. The possibility to improve these results through optimized techniques for assessors' assignment is also discussed. Experimental results with synthetic data are presented and show better performances compared to standard aggregation operators (i.e. median or mean) as well as to similar existing approaches.","PeriodicalId":395401,"journal":{"name":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Towards Adaptive Peer Assessment for MOOCs\",\"authors\":\"N. Capuano, S. Caballé\",\"doi\":\"10.1109/3PGCIC.2015.7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increase in popularity of Massive Open Online Courses (MOOCs) requires the resolution of new issues related to the huge number of participants to such courses. Among the main challenges is the difficulty in students' assessment, especially for complex assignments, such as essays or open-ended exercises, which is limited by the ability of teachers to evaluate and provide feedback at large scale. A feasible approach to tackle this problem is peer assessment, in which students also play the role of assessor for assignments submitted by others. Unfortunately, as students may have different expertise, peer assessment often does not deliver accurate results compared to human experts. In this paper, we describe and compare different methods aimed at mitigating this issue by adaptively combining peer grades on the basis of the detected expertise of the assessors. The possibility to improve these results through optimized techniques for assessors' assignment is also discussed. Experimental results with synthetic data are presented and show better performances compared to standard aggregation operators (i.e. median or mean) as well as to similar existing approaches.\",\"PeriodicalId\":395401,\"journal\":{\"name\":\"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3PGCIC.2015.7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3PGCIC.2015.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

大规模在线开放课程(MOOCs)越来越受欢迎,这就需要解决与大量参与者相关的新问题。主要的挑战之一是学生的评估困难,特别是对于复杂的作业,如论文或开放式练习,这受到教师评估和提供大规模反馈的能力的限制。解决这个问题的一个可行的方法是同侪评估,在这种评估中,学生也扮演评估人的角色,评估其他人提交的作业。不幸的是,由于学生可能有不同的专业知识,与人类专家相比,同行评估往往不能提供准确的结果。在本文中,我们描述并比较了不同的方法,这些方法旨在通过自适应地结合评估人员的专业知识来缓解这一问题。本文还讨论了通过优化评估人员分配技术来改善这些结果的可能性。本文给出了合成数据的实验结果,与标准聚合算子(即中位数或平均值)以及类似的现有方法相比,显示出更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Adaptive Peer Assessment for MOOCs
The increase in popularity of Massive Open Online Courses (MOOCs) requires the resolution of new issues related to the huge number of participants to such courses. Among the main challenges is the difficulty in students' assessment, especially for complex assignments, such as essays or open-ended exercises, which is limited by the ability of teachers to evaluate and provide feedback at large scale. A feasible approach to tackle this problem is peer assessment, in which students also play the role of assessor for assignments submitted by others. Unfortunately, as students may have different expertise, peer assessment often does not deliver accurate results compared to human experts. In this paper, we describe and compare different methods aimed at mitigating this issue by adaptively combining peer grades on the basis of the detected expertise of the assessors. The possibility to improve these results through optimized techniques for assessors' assignment is also discussed. Experimental results with synthetic data are presented and show better performances compared to standard aggregation operators (i.e. median or mean) as well as to similar existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信