使用类特异性特征的HEP-2细胞图像的分层分类

Vibha Gupta, Krati Gupta, A. Bhavsar, A. Sao
{"title":"使用类特异性特征的HEP-2细胞图像的分层分类","authors":"Vibha Gupta, Krati Gupta, A. Bhavsar, A. Sao","doi":"10.1109/EUVIP.2016.7764585","DOIUrl":null,"url":null,"abstract":"The paper proposes a class-specific feature assisted automatic classification approach of microscopic HEp-2 cell images. Unlike traditional methods our method highlights two important aspects: (1) the visual characteristics of classes to formulate class-specific image features and (2) the classification task is treated as hierarchical verification sub-tasks. Thus, the overall classification problem is modeled as a verification of each class, using its class-specific features. We have demonstrated that the proposed method yields a high classification rate utilizing simple and efficient features with only (20%) of the data for training. Additionally, we also experimentally analyze the crucial aspects, such as comparison with a traditional non-hierarchical framework and performance evaluation on low contrast images which is useful for early disease detection.","PeriodicalId":136980,"journal":{"name":"2016 6th European Workshop on Visual Information Processing (EUVIP)","volume":"117 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Hierarchical classification of HEP-2 cell images using class-specific features\",\"authors\":\"Vibha Gupta, Krati Gupta, A. Bhavsar, A. Sao\",\"doi\":\"10.1109/EUVIP.2016.7764585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper proposes a class-specific feature assisted automatic classification approach of microscopic HEp-2 cell images. Unlike traditional methods our method highlights two important aspects: (1) the visual characteristics of classes to formulate class-specific image features and (2) the classification task is treated as hierarchical verification sub-tasks. Thus, the overall classification problem is modeled as a verification of each class, using its class-specific features. We have demonstrated that the proposed method yields a high classification rate utilizing simple and efficient features with only (20%) of the data for training. Additionally, we also experimentally analyze the crucial aspects, such as comparison with a traditional non-hierarchical framework and performance evaluation on low contrast images which is useful for early disease detection.\",\"PeriodicalId\":136980,\"journal\":{\"name\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"volume\":\"117 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 6th European Workshop on Visual Information Processing (EUVIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUVIP.2016.7764585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 6th European Workshop on Visual Information Processing (EUVIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUVIP.2016.7764585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

提出了一种基于类特异性特征的HEp-2细胞显微图像自动分类方法。与传统方法不同,我们的方法突出了两个重要方面:(1)分类的视觉特征来形成特定于类的图像特征;(2)分类任务被视为分层验证子任务。因此,整个分类问题被建模为使用特定于类的特征对每个类进行验证。我们已经证明,所提出的方法产生了一个高分类率,利用简单和有效的特征,只有(20%)的数据进行训练。此外,我们还对关键方面进行了实验分析,例如与传统非分层框架的比较以及对低对比度图像的性能评估,这对早期疾病检测有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hierarchical classification of HEP-2 cell images using class-specific features
The paper proposes a class-specific feature assisted automatic classification approach of microscopic HEp-2 cell images. Unlike traditional methods our method highlights two important aspects: (1) the visual characteristics of classes to formulate class-specific image features and (2) the classification task is treated as hierarchical verification sub-tasks. Thus, the overall classification problem is modeled as a verification of each class, using its class-specific features. We have demonstrated that the proposed method yields a high classification rate utilizing simple and efficient features with only (20%) of the data for training. Additionally, we also experimentally analyze the crucial aspects, such as comparison with a traditional non-hierarchical framework and performance evaluation on low contrast images which is useful for early disease detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信