{"title":"在解码器处具有侧信息的近无损源编码:超越条件熵","authors":"E. Yang, Dake He","doi":"10.1109/ITA.2008.4601089","DOIUrl":null,"url":null,"abstract":"In near lossless source coding with decoder only side information, i.e., Slepian-Wolf coding (with one encoder), a source X with finite alphabet X is first encoded, and then later decoded subject to a small error probability with the help of side information Y with finite alphabet Y available only to the decoder. The classical result by Slepian and Wolf shows that the minimum average compression rate achievable asymptotically subject to a small error probability constraint for a memoryless pair (X , Y) is given by the conditional entropy H(X|Y). In this paper, we look beyond conditional entropy and investigate the tradeoff between compression rate and decoding error spectrum in Slepian-Wolf coding when the decoding error probability goes to zero exponentially fast. It is shown that when the decoding error probability goes to zero at the speed of 2-deltan, where delta is a positive constant and n denotes the source sequences' length, the minimum average compression rate achievable asymptotically is strictly greater than H(X|Y) regardless of how small delta is. More specifically, the minimum average compression rate achievable asymptotically is lower bounded by a quantity called the intrinsic conditional entropy Hin(X|Y, delta), which is strictly greater than H(X|Y), and is also asymptotically achievable for small delta.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Near lossless source coding with side information at the decoder: Beyond conditional entropy\",\"authors\":\"E. Yang, Dake He\",\"doi\":\"10.1109/ITA.2008.4601089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In near lossless source coding with decoder only side information, i.e., Slepian-Wolf coding (with one encoder), a source X with finite alphabet X is first encoded, and then later decoded subject to a small error probability with the help of side information Y with finite alphabet Y available only to the decoder. The classical result by Slepian and Wolf shows that the minimum average compression rate achievable asymptotically subject to a small error probability constraint for a memoryless pair (X , Y) is given by the conditional entropy H(X|Y). In this paper, we look beyond conditional entropy and investigate the tradeoff between compression rate and decoding error spectrum in Slepian-Wolf coding when the decoding error probability goes to zero exponentially fast. It is shown that when the decoding error probability goes to zero at the speed of 2-deltan, where delta is a positive constant and n denotes the source sequences' length, the minimum average compression rate achievable asymptotically is strictly greater than H(X|Y) regardless of how small delta is. More specifically, the minimum average compression rate achievable asymptotically is lower bounded by a quantity called the intrinsic conditional entropy Hin(X|Y, delta), which is strictly greater than H(X|Y), and is also asymptotically achievable for small delta.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601089\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601089","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near lossless source coding with side information at the decoder: Beyond conditional entropy
In near lossless source coding with decoder only side information, i.e., Slepian-Wolf coding (with one encoder), a source X with finite alphabet X is first encoded, and then later decoded subject to a small error probability with the help of side information Y with finite alphabet Y available only to the decoder. The classical result by Slepian and Wolf shows that the minimum average compression rate achievable asymptotically subject to a small error probability constraint for a memoryless pair (X , Y) is given by the conditional entropy H(X|Y). In this paper, we look beyond conditional entropy and investigate the tradeoff between compression rate and decoding error spectrum in Slepian-Wolf coding when the decoding error probability goes to zero exponentially fast. It is shown that when the decoding error probability goes to zero at the speed of 2-deltan, where delta is a positive constant and n denotes the source sequences' length, the minimum average compression rate achievable asymptotically is strictly greater than H(X|Y) regardless of how small delta is. More specifically, the minimum average compression rate achievable asymptotically is lower bounded by a quantity called the intrinsic conditional entropy Hin(X|Y, delta), which is strictly greater than H(X|Y), and is also asymptotically achievable for small delta.