基于移动的中断估计器:使用移动位置数据来预测灾害影响中的社区变化

T. Farkas, M. Bernauer, Umang Shah, Kaitlyn Webster, Trisha Miller
{"title":"基于移动的中断估计器:使用移动位置数据来预测灾害影响中的社区变化","authors":"T. Farkas, M. Bernauer, Umang Shah, Kaitlyn Webster, Trisha Miller","doi":"10.1109/RWS55399.2022.9984017","DOIUrl":null,"url":null,"abstract":"Predicting which communities will be most disrupted by natural or anthropogenic disasters is of central concern to strategic planners seeking to optimize equitable outcomes of infrastructure investment. In this paper, we describe an approach to using mobile location data to estimate the relative magnitude of disruption across communities with arbitrary boundary delineations and use predictive modeling to show how mobility metrics and Census-based demographic information can be combined to predict the impact of similar disasters in novel scenarios. We demonstrate our approach through application of the proposed methodology to the Colonial Pipeline hack of 2021 and discuss opportunities for alternatives and refinements given additional data sets. The resulting movement-based estimation and prediction approach offers an avenue for ensuring a more resilient nation through strategic planning.","PeriodicalId":170769,"journal":{"name":"2022 Resilience Week (RWS)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Movement-based disruption estimators: Using mobile location data to predict community variation in disaster impacts\",\"authors\":\"T. Farkas, M. Bernauer, Umang Shah, Kaitlyn Webster, Trisha Miller\",\"doi\":\"10.1109/RWS55399.2022.9984017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Predicting which communities will be most disrupted by natural or anthropogenic disasters is of central concern to strategic planners seeking to optimize equitable outcomes of infrastructure investment. In this paper, we describe an approach to using mobile location data to estimate the relative magnitude of disruption across communities with arbitrary boundary delineations and use predictive modeling to show how mobility metrics and Census-based demographic information can be combined to predict the impact of similar disasters in novel scenarios. We demonstrate our approach through application of the proposed methodology to the Colonial Pipeline hack of 2021 and discuss opportunities for alternatives and refinements given additional data sets. The resulting movement-based estimation and prediction approach offers an avenue for ensuring a more resilient nation through strategic planning.\",\"PeriodicalId\":170769,\"journal\":{\"name\":\"2022 Resilience Week (RWS)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Resilience Week (RWS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RWS55399.2022.9984017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Resilience Week (RWS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RWS55399.2022.9984017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

预测哪些社区最容易受到自然或人为灾害的破坏,是寻求优化基础设施投资公平结果的战略规划者关注的核心问题。在本文中,我们描述了一种使用移动位置数据来估计具有任意边界划定的社区的相对破坏程度的方法,并使用预测建模来展示如何将流动性指标和基于人口普查的人口信息相结合,以预测在新场景中类似灾害的影响。我们通过将提出的方法应用于2021年的Colonial Pipeline黑客来展示我们的方法,并讨论了在额外数据集的情况下替代和改进的机会。由此产生的基于运动的估计和预测方法为通过战略规划确保一个更有弹性的国家提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Movement-based disruption estimators: Using mobile location data to predict community variation in disaster impacts
Predicting which communities will be most disrupted by natural or anthropogenic disasters is of central concern to strategic planners seeking to optimize equitable outcomes of infrastructure investment. In this paper, we describe an approach to using mobile location data to estimate the relative magnitude of disruption across communities with arbitrary boundary delineations and use predictive modeling to show how mobility metrics and Census-based demographic information can be combined to predict the impact of similar disasters in novel scenarios. We demonstrate our approach through application of the proposed methodology to the Colonial Pipeline hack of 2021 and discuss opportunities for alternatives and refinements given additional data sets. The resulting movement-based estimation and prediction approach offers an avenue for ensuring a more resilient nation through strategic planning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信