{"title":"基于深度卷积神经网络的Cifar-10分类","authors":"R. Doon, Tarun Kumar Rawat, S. Gautam","doi":"10.1109/PUNECON.2018.8745428","DOIUrl":null,"url":null,"abstract":"Deep learning models such as convolution neural networks have been successful in image classification and object detection tasks. Cifar-10 dataset is used in this paper to benchmark our deep learning model. Various function optimization methods such as Adam, RMS along with various regularization techniques are used to get good accuracy on image classification task.","PeriodicalId":166677,"journal":{"name":"2018 IEEE Punecon","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"Cifar-10 Classification using Deep Convolutional Neural Network\",\"authors\":\"R. Doon, Tarun Kumar Rawat, S. Gautam\",\"doi\":\"10.1109/PUNECON.2018.8745428\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning models such as convolution neural networks have been successful in image classification and object detection tasks. Cifar-10 dataset is used in this paper to benchmark our deep learning model. Various function optimization methods such as Adam, RMS along with various regularization techniques are used to get good accuracy on image classification task.\",\"PeriodicalId\":166677,\"journal\":{\"name\":\"2018 IEEE Punecon\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Punecon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PUNECON.2018.8745428\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Punecon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PUNECON.2018.8745428","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cifar-10 Classification using Deep Convolutional Neural Network
Deep learning models such as convolution neural networks have been successful in image classification and object detection tasks. Cifar-10 dataset is used in this paper to benchmark our deep learning model. Various function optimization methods such as Adam, RMS along with various regularization techniques are used to get good accuracy on image classification task.