{"title":"结合Adaboost的CNN遥感场景分类新框架","authors":"Xudong Hu, Penglin Zhang, Qi Zhang","doi":"10.1109/IGARSS39084.2020.9324261","DOIUrl":null,"url":null,"abstract":"Deep learning is a powerful means to recognize remote sensing image scene categories. In this study, a deep convolutional neural network (CNN) based ensemble method is proposed. Firstly, a CNN architecture composed of the feature layer and the classifier layer is designed. Then the classifier layer of CNN is treated as base-learner and integrated with the AdaBoost technique to construct a CNN-AdaBoost ensemble framework. The proposed method is compared with the CNN-SVM and fine-tuned VGG16. The experiment results on UC Merced land-use dataset show that the CNN-AdaBoost achieves an improved overall accuracy by 4.46% against the sole CNN. Also, our method outperforms another two paradigms. Therefore, the proposed CNN based ensemble method is promising for image representations regarding remote sensing image scene classification.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Novel Framework of CNN Integrated with Adaboost for Remote Sensing Scene Classification\",\"authors\":\"Xudong Hu, Penglin Zhang, Qi Zhang\",\"doi\":\"10.1109/IGARSS39084.2020.9324261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a powerful means to recognize remote sensing image scene categories. In this study, a deep convolutional neural network (CNN) based ensemble method is proposed. Firstly, a CNN architecture composed of the feature layer and the classifier layer is designed. Then the classifier layer of CNN is treated as base-learner and integrated with the AdaBoost technique to construct a CNN-AdaBoost ensemble framework. The proposed method is compared with the CNN-SVM and fine-tuned VGG16. The experiment results on UC Merced land-use dataset show that the CNN-AdaBoost achieves an improved overall accuracy by 4.46% against the sole CNN. Also, our method outperforms another two paradigms. Therefore, the proposed CNN based ensemble method is promising for image representations regarding remote sensing image scene classification.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Novel Framework of CNN Integrated with Adaboost for Remote Sensing Scene Classification
Deep learning is a powerful means to recognize remote sensing image scene categories. In this study, a deep convolutional neural network (CNN) based ensemble method is proposed. Firstly, a CNN architecture composed of the feature layer and the classifier layer is designed. Then the classifier layer of CNN is treated as base-learner and integrated with the AdaBoost technique to construct a CNN-AdaBoost ensemble framework. The proposed method is compared with the CNN-SVM and fine-tuned VGG16. The experiment results on UC Merced land-use dataset show that the CNN-AdaBoost achieves an improved overall accuracy by 4.46% against the sole CNN. Also, our method outperforms another two paradigms. Therefore, the proposed CNN based ensemble method is promising for image representations regarding remote sensing image scene classification.