结合Adaboost的CNN遥感场景分类新框架

Xudong Hu, Penglin Zhang, Qi Zhang
{"title":"结合Adaboost的CNN遥感场景分类新框架","authors":"Xudong Hu, Penglin Zhang, Qi Zhang","doi":"10.1109/IGARSS39084.2020.9324261","DOIUrl":null,"url":null,"abstract":"Deep learning is a powerful means to recognize remote sensing image scene categories. In this study, a deep convolutional neural network (CNN) based ensemble method is proposed. Firstly, a CNN architecture composed of the feature layer and the classifier layer is designed. Then the classifier layer of CNN is treated as base-learner and integrated with the AdaBoost technique to construct a CNN-AdaBoost ensemble framework. The proposed method is compared with the CNN-SVM and fine-tuned VGG16. The experiment results on UC Merced land-use dataset show that the CNN-AdaBoost achieves an improved overall accuracy by 4.46% against the sole CNN. Also, our method outperforms another two paradigms. Therefore, the proposed CNN based ensemble method is promising for image representations regarding remote sensing image scene classification.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"A Novel Framework of CNN Integrated with Adaboost for Remote Sensing Scene Classification\",\"authors\":\"Xudong Hu, Penglin Zhang, Qi Zhang\",\"doi\":\"10.1109/IGARSS39084.2020.9324261\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning is a powerful means to recognize remote sensing image scene categories. In this study, a deep convolutional neural network (CNN) based ensemble method is proposed. Firstly, a CNN architecture composed of the feature layer and the classifier layer is designed. Then the classifier layer of CNN is treated as base-learner and integrated with the AdaBoost technique to construct a CNN-AdaBoost ensemble framework. The proposed method is compared with the CNN-SVM and fine-tuned VGG16. The experiment results on UC Merced land-use dataset show that the CNN-AdaBoost achieves an improved overall accuracy by 4.46% against the sole CNN. Also, our method outperforms another two paradigms. Therefore, the proposed CNN based ensemble method is promising for image representations regarding remote sensing image scene classification.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9324261\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9324261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

深度学习是识别遥感图像场景类别的有力手段。本文提出了一种基于深度卷积神经网络(CNN)的集成方法。首先,设计了由特征层和分类器层组成的CNN体系结构。然后将CNN的分类器层作为基础学习器,与AdaBoost技术相结合,构建CNN-AdaBoost集成框架。将该方法与CNN-SVM和微调后的VGG16进行了比较。在UC Merced土地利用数据集上的实验结果表明,CNN- adaboost比单一CNN的整体精度提高了4.46%。此外,我们的方法优于另外两种范例。因此,本文提出的基于CNN的集成方法在遥感图像场景分类的图像表示中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Framework of CNN Integrated with Adaboost for Remote Sensing Scene Classification
Deep learning is a powerful means to recognize remote sensing image scene categories. In this study, a deep convolutional neural network (CNN) based ensemble method is proposed. Firstly, a CNN architecture composed of the feature layer and the classifier layer is designed. Then the classifier layer of CNN is treated as base-learner and integrated with the AdaBoost technique to construct a CNN-AdaBoost ensemble framework. The proposed method is compared with the CNN-SVM and fine-tuned VGG16. The experiment results on UC Merced land-use dataset show that the CNN-AdaBoost achieves an improved overall accuracy by 4.46% against the sole CNN. Also, our method outperforms another two paradigms. Therefore, the proposed CNN based ensemble method is promising for image representations regarding remote sensing image scene classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信