人工免疫分类系统AIRS中的非欧几里得距离测量

J. S. Hamaker, L. Boggess
{"title":"人工免疫分类系统AIRS中的非欧几里得距离测量","authors":"J. S. Hamaker, L. Boggess","doi":"10.1109/CEC.2004.1330980","DOIUrl":null,"url":null,"abstract":"The AIRS classifier, based on principles derived from resource limited artificial immune systems, performs consistently well over a broad range of classification problems. This paper explores the effects of adding nonEuclidean distance measures to the basic AIRS algorithm using four well-known publicly available classification problems having various proportions of real, discrete, and nominal features.","PeriodicalId":152088,"journal":{"name":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","volume":"179 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":"{\"title\":\"Non-Euclidean distance measures in AIRS, an artificial immune classification system\",\"authors\":\"J. S. Hamaker, L. Boggess\",\"doi\":\"10.1109/CEC.2004.1330980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The AIRS classifier, based on principles derived from resource limited artificial immune systems, performs consistently well over a broad range of classification problems. This paper explores the effects of adding nonEuclidean distance measures to the basic AIRS algorithm using four well-known publicly available classification problems having various proportions of real, discrete, and nominal features.\",\"PeriodicalId\":152088,\"journal\":{\"name\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"volume\":\"179 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"51\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2004.1330980\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2004.1330980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

摘要

AIRS分类器基于源自资源有限的人工免疫系统的原理,在广泛的分类问题上表现一致。本文探讨了在基本的AIRS算法中加入非欧几里德距离度量的效果,使用了四个众所周知的公开可用的分类问题,这些分类问题具有不同比例的真实、离散和名义特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Euclidean distance measures in AIRS, an artificial immune classification system
The AIRS classifier, based on principles derived from resource limited artificial immune systems, performs consistently well over a broad range of classification problems. This paper explores the effects of adding nonEuclidean distance measures to the basic AIRS algorithm using four well-known publicly available classification problems having various proportions of real, discrete, and nominal features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信