一种基于椭圆形密度的纠缠聚类检测分类算法

Stanley Smith, M. Pischella, M. Terré
{"title":"一种基于椭圆形密度的纠缠聚类检测分类算法","authors":"Stanley Smith, M. Pischella, M. Terré","doi":"10.23919/EUSIPCO.2017.8081220","DOIUrl":null,"url":null,"abstract":"We present a density-based clustering method producing a covering of the dataset by ellipsoidal structures in order to detect possibly entangled clusters. We first introduce an unconstrained version of the algorithm which does not require any assumption on the number of clusters. Then a constrained version using a priori knowledge to improve the bare clustering is discussed. We evaluate the performance of our algorithm and several other well-known clustering methods using existing cluster validity techniques on randomly-generated bi-dimensional gaussian mixtures. Our simulation results show that both versions of our algorithm compare well with the reference algorithms according to the used metrics, foreseeing future improvements of our method.","PeriodicalId":346811,"journal":{"name":"2017 25th European Signal Processing Conference (EUSIPCO)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An elliptical-shaped density-based classification algorithm for detection of entangled clusters\",\"authors\":\"Stanley Smith, M. Pischella, M. Terré\",\"doi\":\"10.23919/EUSIPCO.2017.8081220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a density-based clustering method producing a covering of the dataset by ellipsoidal structures in order to detect possibly entangled clusters. We first introduce an unconstrained version of the algorithm which does not require any assumption on the number of clusters. Then a constrained version using a priori knowledge to improve the bare clustering is discussed. We evaluate the performance of our algorithm and several other well-known clustering methods using existing cluster validity techniques on randomly-generated bi-dimensional gaussian mixtures. Our simulation results show that both versions of our algorithm compare well with the reference algorithms according to the used metrics, foreseeing future improvements of our method.\",\"PeriodicalId\":346811,\"journal\":{\"name\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 25th European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/EUSIPCO.2017.8081220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EUSIPCO.2017.8081220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们提出了一种基于密度的聚类方法,通过椭球结构对数据集进行覆盖,以检测可能纠缠的聚类。我们首先介绍了该算法的无约束版本,它不需要对簇的数量进行任何假设。然后讨论了利用先验知识改进裸聚类的约束版本。我们使用现有的聚类有效性技术评估了我们的算法和其他几种知名的聚类方法在随机生成的二维高斯混合物上的性能。我们的仿真结果表明,根据使用的指标,我们的算法的两个版本都与参考算法进行了很好的比较,这预示着我们的方法在未来的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An elliptical-shaped density-based classification algorithm for detection of entangled clusters
We present a density-based clustering method producing a covering of the dataset by ellipsoidal structures in order to detect possibly entangled clusters. We first introduce an unconstrained version of the algorithm which does not require any assumption on the number of clusters. Then a constrained version using a priori knowledge to improve the bare clustering is discussed. We evaluate the performance of our algorithm and several other well-known clustering methods using existing cluster validity techniques on randomly-generated bi-dimensional gaussian mixtures. Our simulation results show that both versions of our algorithm compare well with the reference algorithms according to the used metrics, foreseeing future improvements of our method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信