震源与区域参数反演策略

Z. Tao, A. Cui, Xiwei Wang, X. Tao
{"title":"震源与区域参数反演策略","authors":"Z. Tao, A. Cui, Xiwei Wang, X. Tao","doi":"10.1109/ICNC.2012.6234628","DOIUrl":null,"url":null,"abstract":"To obtain source and regional parameters, which are adopted to describe the earthquake source and crustal medium in a region to estimate ground motion, an inversion strategy is presented in this paper. Since these parameters are inversed from seismographic records by micro-genetic algorithm to establish strong ground motion attenuation relations, it is important to choose parameters not related with the sizes of earthquakes. One source parameter, stress drop Δσ, and four regional ones, Q0, η, R1 and R2, are selected as the inversed parameters.","PeriodicalId":404981,"journal":{"name":"2012 8th International Conference on Natural Computation","volume":"298 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Inversion strategy for seismic source and regional parameters\",\"authors\":\"Z. Tao, A. Cui, Xiwei Wang, X. Tao\",\"doi\":\"10.1109/ICNC.2012.6234628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To obtain source and regional parameters, which are adopted to describe the earthquake source and crustal medium in a region to estimate ground motion, an inversion strategy is presented in this paper. Since these parameters are inversed from seismographic records by micro-genetic algorithm to establish strong ground motion attenuation relations, it is important to choose parameters not related with the sizes of earthquakes. One source parameter, stress drop Δσ, and four regional ones, Q0, η, R1 and R2, are selected as the inversed parameters.\",\"PeriodicalId\":404981,\"journal\":{\"name\":\"2012 8th International Conference on Natural Computation\",\"volume\":\"298 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-05-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 8th International Conference on Natural Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNC.2012.6234628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 8th International Conference on Natural Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNC.2012.6234628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种反演策略,以获取用于描述某一地区震源和地壳介质的震源参数和区域参数,并以此来估计地震动。由于这些参数是通过微遗传算法从地震记录中反演的,以建立强地震动衰减关系,因此选择与地震大小无关的参数非常重要。选取1个源参数应力降Δσ和4个区域参数Q0、η、R1、R2作为反演参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inversion strategy for seismic source and regional parameters
To obtain source and regional parameters, which are adopted to describe the earthquake source and crustal medium in a region to estimate ground motion, an inversion strategy is presented in this paper. Since these parameters are inversed from seismographic records by micro-genetic algorithm to establish strong ground motion attenuation relations, it is important to choose parameters not related with the sizes of earthquakes. One source parameter, stress drop Δσ, and four regional ones, Q0, η, R1 and R2, are selected as the inversed parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信