传感器阵列信号多尺度反褶积的一种新方法

T. Akgul, A. El-Jaroudi, M. Simaan
{"title":"传感器阵列信号多尺度反褶积的一种新方法","authors":"T. Akgul, A. El-Jaroudi, M. Simaan","doi":"10.1109/SSAP.1992.246888","DOIUrl":null,"url":null,"abstract":"The authors' model assumes that the data are generated as a convolution of an unknown wavelet with various time-scaled versions of an unknown reflectivity sequence. Their approach relies on exploiting the redundancy in the measurements due to time-scaling. No assumptions are made on the statistical properties of these signals. The deconvolution problem is solved as a quadratic minimization subject to a quadratic constraint. The results are illustrated with a simulation example.<<ETX>>","PeriodicalId":309407,"journal":{"name":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A novel solution to multi-scale deconvolution of sensor array signals\",\"authors\":\"T. Akgul, A. El-Jaroudi, M. Simaan\",\"doi\":\"10.1109/SSAP.1992.246888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The authors' model assumes that the data are generated as a convolution of an unknown wavelet with various time-scaled versions of an unknown reflectivity sequence. Their approach relies on exploiting the redundancy in the measurements due to time-scaling. No assumptions are made on the statistical properties of these signals. The deconvolution problem is solved as a quadratic minimization subject to a quadratic constraint. The results are illustrated with a simulation example.<<ETX>>\",\"PeriodicalId\":309407,\"journal\":{\"name\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1992.246888\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992] IEEE Sixth SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1992.246888","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

作者的模型假设数据是作为一个未知小波与各种时间尺度版本的未知反射率序列的卷积而产生的。他们的方法依赖于利用由于时间尺度导致的测量冗余。对这些信号的统计性质不作任何假设。反卷积问题是一个受二次约束的二次最小化问题。最后通过仿真实例对结果进行了说明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A novel solution to multi-scale deconvolution of sensor array signals
The authors' model assumes that the data are generated as a convolution of an unknown wavelet with various time-scaled versions of an unknown reflectivity sequence. Their approach relies on exploiting the redundancy in the measurements due to time-scaling. No assumptions are made on the statistical properties of these signals. The deconvolution problem is solved as a quadratic minimization subject to a quadratic constraint. The results are illustrated with a simulation example.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信