高速pcb中减少串扰的差分通孔设计

Junda Wang, Chaohui Xu, Shuai Zhong, S. Bai, Jongjoo Lee, Donghyun Kim
{"title":"高速pcb中减少串扰的差分通孔设计","authors":"Junda Wang, Chaohui Xu, Shuai Zhong, S. Bai, Jongjoo Lee, Donghyun Kim","doi":"10.1109/EMCSI38923.2020.9191558","DOIUrl":null,"url":null,"abstract":"With an increased data rate of high-speed PCBs, an increase in crosstalk degrades the signal integrity of the highspeed system. In most PCB designs, via-to-via coupling has the largest impact on crosstalk. Until now, multiple PCB design methods for crosstalk mitigation are proposed under the IC pin field area, such as increasing the distance between signal pairs, adding more ground vias in between the signal vias and placing signal pairs orthogonal to each other. However, such methods sacrifice the signal to ground (S:G) ratio and require a change in the IC package ball map. In this paper, two different via designs are proposed to reduce crosstalk without sacrificing the S:G ratio, while maintaining the package ball maps. In the first proposed design, crosstalk is mitigated through tilted drilling, where the vias are drilled with 45 degrees angle on the PCB. Differential via pairs located in different rows achieves orthogonality for crosstalk cancellation when viewed from the horizontal cross-section. In the second proposed design, additional intermediate vias are designed to achieve orthogonality between differential via pairs without changing the IC package ball map or the drilling direction. Using a 3D full-wave simulation tool, the two prosed designs are simulated. Simulation results demonstrate that both designs decrease in crosstalk with negligible change in insertion loss and return loss compared to the conventional via design up to 30 GHz range. The proposed methods can be directly applied to lower the crosstalk in the existing high-speed PCBs with minor adjustments in the PCB design while maintaining the same IC packages.","PeriodicalId":189322,"journal":{"name":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Differential Via Designs for Crosstalk Reduction in High-Speed PCBs\",\"authors\":\"Junda Wang, Chaohui Xu, Shuai Zhong, S. Bai, Jongjoo Lee, Donghyun Kim\",\"doi\":\"10.1109/EMCSI38923.2020.9191558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With an increased data rate of high-speed PCBs, an increase in crosstalk degrades the signal integrity of the highspeed system. In most PCB designs, via-to-via coupling has the largest impact on crosstalk. Until now, multiple PCB design methods for crosstalk mitigation are proposed under the IC pin field area, such as increasing the distance between signal pairs, adding more ground vias in between the signal vias and placing signal pairs orthogonal to each other. However, such methods sacrifice the signal to ground (S:G) ratio and require a change in the IC package ball map. In this paper, two different via designs are proposed to reduce crosstalk without sacrificing the S:G ratio, while maintaining the package ball maps. In the first proposed design, crosstalk is mitigated through tilted drilling, where the vias are drilled with 45 degrees angle on the PCB. Differential via pairs located in different rows achieves orthogonality for crosstalk cancellation when viewed from the horizontal cross-section. In the second proposed design, additional intermediate vias are designed to achieve orthogonality between differential via pairs without changing the IC package ball map or the drilling direction. Using a 3D full-wave simulation tool, the two prosed designs are simulated. Simulation results demonstrate that both designs decrease in crosstalk with negligible change in insertion loss and return loss compared to the conventional via design up to 30 GHz range. The proposed methods can be directly applied to lower the crosstalk in the existing high-speed PCBs with minor adjustments in the PCB design while maintaining the same IC packages.\",\"PeriodicalId\":189322,\"journal\":{\"name\":\"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCSI38923.2020.9191558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI38923.2020.9191558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着高速pcb数据速率的增加,串扰的增加会降低高速系统的信号完整性。在大多数PCB设计中,通孔耦合对串扰的影响最大。到目前为止,在IC引脚场区域下,提出了多种PCB设计方法来缓解串扰,例如增加信号对之间的距离,在信号过孔之间增加接地过孔,以及将信号对相互正交放置。然而,这种方法牺牲了信号对地(S:G)比,并且需要改变IC封装球图。本文提出了两种不同的通孔设计,在不牺牲S:G比的情况下减少串扰,同时保持封装球图。在第一个提出的设计中,通过倾斜钻孔来减轻串扰,其中过孔在PCB上以45度角钻孔。当从水平截面看时,位于不同行中的微分通孔对实现正交,以消除串扰。在第二种设计中,在不改变IC封装球图或钻井方向的情况下,设计了额外的中间过孔,以实现差动过孔对之间的正交性。利用三维全波仿真工具,对两种提出的设计进行了仿真。仿真结果表明,在30ghz范围内,与传统的通孔设计相比,两种设计都可以减少串扰,而插入损耗和回波损耗的变化可以忽略不计。所提出的方法可以直接应用于降低现有高速PCB中的串扰,只需在PCB设计中进行微小的调整,同时保持相同的IC封装。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Differential Via Designs for Crosstalk Reduction in High-Speed PCBs
With an increased data rate of high-speed PCBs, an increase in crosstalk degrades the signal integrity of the highspeed system. In most PCB designs, via-to-via coupling has the largest impact on crosstalk. Until now, multiple PCB design methods for crosstalk mitigation are proposed under the IC pin field area, such as increasing the distance between signal pairs, adding more ground vias in between the signal vias and placing signal pairs orthogonal to each other. However, such methods sacrifice the signal to ground (S:G) ratio and require a change in the IC package ball map. In this paper, two different via designs are proposed to reduce crosstalk without sacrificing the S:G ratio, while maintaining the package ball maps. In the first proposed design, crosstalk is mitigated through tilted drilling, where the vias are drilled with 45 degrees angle on the PCB. Differential via pairs located in different rows achieves orthogonality for crosstalk cancellation when viewed from the horizontal cross-section. In the second proposed design, additional intermediate vias are designed to achieve orthogonality between differential via pairs without changing the IC package ball map or the drilling direction. Using a 3D full-wave simulation tool, the two prosed designs are simulated. Simulation results demonstrate that both designs decrease in crosstalk with negligible change in insertion loss and return loss compared to the conventional via design up to 30 GHz range. The proposed methods can be directly applied to lower the crosstalk in the existing high-speed PCBs with minor adjustments in the PCB design while maintaining the same IC packages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信