矢量量化器设计的一种高效并行算法

Jianhua Lin Jianhua Lin
{"title":"矢量量化器设计的一种高效并行算法","authors":"Jianhua Lin Jianhua Lin","doi":"10.1109/ICPP.1994.52","DOIUrl":null,"url":null,"abstract":"Vector quantization is a technique used extensively and successfully to compress digitized data such as speech and images. The design of a vector quantizer is very computationally intensive. Parallel algorithms based on various architectures have been proposed for related applications in clustering. These algorithms are in general not practical for the vector quantization problem because of the magnitude of the parameters involved. We present a parallel SIMD algorithm which can run efficiently on parallel machines of variable sizes. The speedup and efficiency of the algorithms are high across a wide range of input parameters.","PeriodicalId":162043,"journal":{"name":"1994 International Conference on Parallel Processing Vol. 3","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Efficient Parallel Algorithm for Vector Quantizer Design\",\"authors\":\"Jianhua Lin Jianhua Lin\",\"doi\":\"10.1109/ICPP.1994.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector quantization is a technique used extensively and successfully to compress digitized data such as speech and images. The design of a vector quantizer is very computationally intensive. Parallel algorithms based on various architectures have been proposed for related applications in clustering. These algorithms are in general not practical for the vector quantization problem because of the magnitude of the parameters involved. We present a parallel SIMD algorithm which can run efficiently on parallel machines of variable sizes. The speedup and efficiency of the algorithms are high across a wide range of input parameters.\",\"PeriodicalId\":162043,\"journal\":{\"name\":\"1994 International Conference on Parallel Processing Vol. 3\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1994 International Conference on Parallel Processing Vol. 3\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPP.1994.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1994 International Conference on Parallel Processing Vol. 3","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPP.1994.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

矢量量化是一种广泛而成功地用于压缩语音和图像等数字化数据的技术。矢量量化器的设计需要大量的计算量。基于不同架构的并行算法已被提出用于集群的相关应用。由于所涉及的参数的大小,这些算法通常不适用于矢量量化问题。提出了一种可以在可变大小的并行机器上高效运行的并行SIMD算法。在很大的输入参数范围内,算法的加速速度和效率都很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Parallel Algorithm for Vector Quantizer Design
Vector quantization is a technique used extensively and successfully to compress digitized data such as speech and images. The design of a vector quantizer is very computationally intensive. Parallel algorithms based on various architectures have been proposed for related applications in clustering. These algorithms are in general not practical for the vector quantization problem because of the magnitude of the parameters involved. We present a parallel SIMD algorithm which can run efficiently on parallel machines of variable sizes. The speedup and efficiency of the algorithms are high across a wide range of input parameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信