Ignasi Piqu´e Muntan´e, M. J. Fern´andez-Getino, Fern´andez-Getino Garc´ıa
{"title":"基于叠加训练的移动OFDM系统参数化模型和估计分类器的最优平均","authors":"Ignasi Piqu´e Muntan´e, M. J. Fern´andez-Getino, Fern´andez-Getino Garc´ıa","doi":"10.1109/ITC-CSCC58803.2023.10212534","DOIUrl":null,"url":null,"abstract":"Superimposed training (ST) is an attractive technique for channel estimation in orthogonal frequency division multiplexing (OFDM) modulation. However, its main challenge is the intrinsic interference due to the joint transmission of pilot and data symbols, which can be mitigated by averaging the received signal. Previous works analyzed the mean square error (MSE) of the channel estimation, for both least squares (LS) and minimum MSE (MMSE) estimators, and showed that, under realistic channel models, the optimum number of averaged symbols could be computed by solving a transcendental equation. In this paper, as a practical implementation proposal, these optimum averaging values are parametrically approximated with a multilinear regression model. Also, it is proposed an accurate classifier that, under delay and performance tolerances, is able to select the most suitable estimator between LS and MMSE.","PeriodicalId":220939,"journal":{"name":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric Model and Estimator Classifier for Optimal Averaging in Mobile OFDM Systems with Superimposed Training\",\"authors\":\"Ignasi Piqu´e Muntan´e, M. J. Fern´andez-Getino, Fern´andez-Getino Garc´ıa\",\"doi\":\"10.1109/ITC-CSCC58803.2023.10212534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Superimposed training (ST) is an attractive technique for channel estimation in orthogonal frequency division multiplexing (OFDM) modulation. However, its main challenge is the intrinsic interference due to the joint transmission of pilot and data symbols, which can be mitigated by averaging the received signal. Previous works analyzed the mean square error (MSE) of the channel estimation, for both least squares (LS) and minimum MSE (MMSE) estimators, and showed that, under realistic channel models, the optimum number of averaged symbols could be computed by solving a transcendental equation. In this paper, as a practical implementation proposal, these optimum averaging values are parametrically approximated with a multilinear regression model. Also, it is proposed an accurate classifier that, under delay and performance tolerances, is able to select the most suitable estimator between LS and MMSE.\",\"PeriodicalId\":220939,\"journal\":{\"name\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC-CSCC58803.2023.10212534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Technical Conference on Circuits/Systems, Computers, and Communications (ITC-CSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC-CSCC58803.2023.10212534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parametric Model and Estimator Classifier for Optimal Averaging in Mobile OFDM Systems with Superimposed Training
Superimposed training (ST) is an attractive technique for channel estimation in orthogonal frequency division multiplexing (OFDM) modulation. However, its main challenge is the intrinsic interference due to the joint transmission of pilot and data symbols, which can be mitigated by averaging the received signal. Previous works analyzed the mean square error (MSE) of the channel estimation, for both least squares (LS) and minimum MSE (MMSE) estimators, and showed that, under realistic channel models, the optimum number of averaged symbols could be computed by solving a transcendental equation. In this paper, as a practical implementation proposal, these optimum averaging values are parametrically approximated with a multilinear regression model. Also, it is proposed an accurate classifier that, under delay and performance tolerances, is able to select the most suitable estimator between LS and MMSE.