利用两两偏好学习将情绪言语投射到唤醒效价空间

Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen
{"title":"利用两两偏好学习将情绪言语投射到唤醒效价空间","authors":"Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen","doi":"10.1109/SPLIM.2016.7528401","DOIUrl":null,"url":null,"abstract":"Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.","PeriodicalId":297318,"journal":{"name":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projecting emotional speech into arousal-valence space using pairwise preference learning\",\"authors\":\"Mohamed Abou-Zleikha, M. G. Christensen, Z. Tan, S. H. Jensen\",\"doi\":\"10.1109/SPLIM.2016.7528401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.\",\"PeriodicalId\":297318,\"journal\":{\"name\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SPLIM.2016.7528401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 First International Workshop on Sensing, Processing and Learning for Intelligent Machines (SPLINE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPLIM.2016.7528401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

语音情感识别是语音处理领域中一个非常具有挑战性的课题。由于人类情感的连续性特征,近年来的研究大多集中在连续空间中的情感识别上。以往的语音情绪标注都是采用连续空间中的likert-like标度系统,并依赖于预测模型来预测情绪,而在本研究中,我们提出了一种基于成对数据标注的数据标注新方法。提出了一组约束来减少标记所需的对数。利用标注后的数据,采用两两进化多元自适应回归样条法构建回归模型。实验表明,与基线随机两两分配相比,识别精度较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Projecting emotional speech into arousal-valence space using pairwise preference learning
Emotion recognition in speech is a very challenging task in the speech processing domain. Because of the continuity characteristics of human emotion, most of the recent research focuses on recognising emotion in a continuous space. While previous attempts for speech emotion annotation adopted the likert-like scaling system in a continuous space and relied on prediction models to predict emotion we, in this research, propose a new method for data labelling based on a pairwise data annotation. A set of constraints was proposed to decrease the number of pairs required to label. The annotated data is used to construct a regression model using the pairwise evolutionary multivariate adaptive regression spline method. The experiments performed show high recognition accuracies compared to the baseline random pairwise assignment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信