基于相似度的非单态模糊逻辑控制提高无人机性能

Changhong Fu, Andriy Sarabakha, E. Kayacan, Christian Wagner, R. John, J. Garibaldi
{"title":"基于相似度的非单态模糊逻辑控制提高无人机性能","authors":"Changhong Fu, Andriy Sarabakha, E. Kayacan, Christian Wagner, R. John, J. Garibaldi","doi":"10.1109/FUZZ-IEEE.2017.8015440","DOIUrl":null,"url":null,"abstract":"As non-singleton fuzzy logic controllers (NSFLCs) are capable of capturing input uncertainties, they have been effectively used to control and navigate unmanned aerial vehicles (UAVs) recently. To further enhance the capability to handle the input uncertainty for the UAV applications, a novel NSFLC with the recently introduced similarity-based inference engine, i.e., Sim-NSFLC, is developed. In this paper, a comparative study in a 3D trajectory tracking application has been carried out using the aforementioned Sim-NSFLC and the NSFLCs with the standard as well as centroid composition-based inference engines, i.e., Sta-NSFLC and Cen-NSFLC. All the NSFLCs are developed within the robot operating system (ROS) using the C++ programming language. Extensive ROS Gazebo simulation-based experiments show that the Sim-NSFLCs can achieve better control performance for the UAVs in comparison with the Sta-NSFLCs and Cen-NSFLCs under different input noise levels.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Similarity-based non-singleton fuzzy logic control for improved performance in UAVs\",\"authors\":\"Changhong Fu, Andriy Sarabakha, E. Kayacan, Christian Wagner, R. John, J. Garibaldi\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As non-singleton fuzzy logic controllers (NSFLCs) are capable of capturing input uncertainties, they have been effectively used to control and navigate unmanned aerial vehicles (UAVs) recently. To further enhance the capability to handle the input uncertainty for the UAV applications, a novel NSFLC with the recently introduced similarity-based inference engine, i.e., Sim-NSFLC, is developed. In this paper, a comparative study in a 3D trajectory tracking application has been carried out using the aforementioned Sim-NSFLC and the NSFLCs with the standard as well as centroid composition-based inference engines, i.e., Sta-NSFLC and Cen-NSFLC. All the NSFLCs are developed within the robot operating system (ROS) using the C++ programming language. Extensive ROS Gazebo simulation-based experiments show that the Sim-NSFLCs can achieve better control performance for the UAVs in comparison with the Sta-NSFLCs and Cen-NSFLCs under different input noise levels.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015440\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

由于非单态模糊控制器(NSFLCs)具有捕获输入不确定性的能力,近年来已被有效地用于无人机的控制和导航。为了进一步提高无人机应用中处理输入不确定性的能力,基于最近引入的基于相似度的推理引擎,开发了一种新的NSFLC,即Sim-NSFLC。本文将上述Sim-NSFLC与基于标准和基于质心成分推理引擎的nsflc,即Sta-NSFLC和cn - nsflc,在一个三维轨迹跟踪应用中进行对比研究。所有nsflc都是在机器人操作系统(ROS)中使用c++编程语言开发的。基于ROS Gazebo仿真的大量实验表明,在不同输入噪声水平下,与Sta-NSFLCs和cn - nsflcs相比,Sim-NSFLCs可以获得更好的无人机控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Similarity-based non-singleton fuzzy logic control for improved performance in UAVs
As non-singleton fuzzy logic controllers (NSFLCs) are capable of capturing input uncertainties, they have been effectively used to control and navigate unmanned aerial vehicles (UAVs) recently. To further enhance the capability to handle the input uncertainty for the UAV applications, a novel NSFLC with the recently introduced similarity-based inference engine, i.e., Sim-NSFLC, is developed. In this paper, a comparative study in a 3D trajectory tracking application has been carried out using the aforementioned Sim-NSFLC and the NSFLCs with the standard as well as centroid composition-based inference engines, i.e., Sta-NSFLC and Cen-NSFLC. All the NSFLCs are developed within the robot operating system (ROS) using the C++ programming language. Extensive ROS Gazebo simulation-based experiments show that the Sim-NSFLCs can achieve better control performance for the UAVs in comparison with the Sta-NSFLCs and Cen-NSFLCs under different input noise levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信