基于低秩分解的线性子空间学习方法

Fanlong Zhang, Jian Yang
{"title":"基于低秩分解的线性子空间学习方法","authors":"Fanlong Zhang, Jian Yang","doi":"10.1109/IBICA.2011.25","DOIUrl":null,"url":null,"abstract":"Most existing subspace analysis methods for image recognition estimate the sample scatter matrices directly based on the training images. However, such methods do not consider the different contributions of different image components to image representation and recognition. Considering that the dominant component will contribute much more than the residual component to image pattern classification, we present a novel discriminate criterion which maximizes the total scatter of dominant components and minimizes simultaneously the total scatter of residual components. This criterion gives rise to a new subspace analysis method, namely the subspace analysis via low rank decomposition (SAL). Further, a supervised version of SAL (SSAL) is presented. The experimental results on benchmark image databases validated that SAL and SSAL outperform those representative subspace analysis methods such as PCA, LDA, LLP and SPP.","PeriodicalId":158080,"journal":{"name":"2011 Second International Conference on Innovations in Bio-inspired Computing and Applications","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A Linear Subspace Learning Approach via Low Rank Decomposition\",\"authors\":\"Fanlong Zhang, Jian Yang\",\"doi\":\"10.1109/IBICA.2011.25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most existing subspace analysis methods for image recognition estimate the sample scatter matrices directly based on the training images. However, such methods do not consider the different contributions of different image components to image representation and recognition. Considering that the dominant component will contribute much more than the residual component to image pattern classification, we present a novel discriminate criterion which maximizes the total scatter of dominant components and minimizes simultaneously the total scatter of residual components. This criterion gives rise to a new subspace analysis method, namely the subspace analysis via low rank decomposition (SAL). Further, a supervised version of SAL (SSAL) is presented. The experimental results on benchmark image databases validated that SAL and SSAL outperform those representative subspace analysis methods such as PCA, LDA, LLP and SPP.\",\"PeriodicalId\":158080,\"journal\":{\"name\":\"2011 Second International Conference on Innovations in Bio-inspired Computing and Applications\",\"volume\":\"113 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 Second International Conference on Innovations in Bio-inspired Computing and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IBICA.2011.25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 Second International Conference on Innovations in Bio-inspired Computing and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IBICA.2011.25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

现有的图像识别子空间分析方法大多是直接基于训练图像估计样本散点矩阵。然而,这些方法没有考虑到不同图像成分对图像表示和识别的不同贡献。考虑到优势分量对图像模式分类的贡献远大于残差分量,提出了一种使优势分量的总散点最大化和残差分量的总散点最小化的判别准则。这一准则产生了一种新的子空间分析方法,即低秩分解子空间分析。在此基础上,提出了一种监督版本的SAL (SSAL)。在基准图像数据库上的实验结果验证了SAL和SSAL优于PCA、LDA、LLP和SPP等具有代表性的子空间分析方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Linear Subspace Learning Approach via Low Rank Decomposition
Most existing subspace analysis methods for image recognition estimate the sample scatter matrices directly based on the training images. However, such methods do not consider the different contributions of different image components to image representation and recognition. Considering that the dominant component will contribute much more than the residual component to image pattern classification, we present a novel discriminate criterion which maximizes the total scatter of dominant components and minimizes simultaneously the total scatter of residual components. This criterion gives rise to a new subspace analysis method, namely the subspace analysis via low rank decomposition (SAL). Further, a supervised version of SAL (SSAL) is presented. The experimental results on benchmark image databases validated that SAL and SSAL outperform those representative subspace analysis methods such as PCA, LDA, LLP and SPP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信