修正傅里叶变换及其性质

D. Khan, A. Rehman, Saleem Iqbal, Ali Ahmed, Sana Jafar, M. Baloch
{"title":"修正傅里叶变换及其性质","authors":"D. Khan, A. Rehman, Saleem Iqbal, Ali Ahmed, Sana Jafar, M. Baloch","doi":"10.20948/mathmontis-2021-51-5","DOIUrl":null,"url":null,"abstract":"In this manuscript we recommend a new description of the modified Fourier transform for a function which is absolutely integrable, having finite number of maxima and minima and finite number of discontinuities which further takes the form of simple Fourier transform for substituting α = e where α > 0 and α ≠ 1. Moreover we prove various results of the modified Fourier transform and also we show that the set that consists of whole modified Fourier transformable functions under the convolution operation is a commutative semi group as well as form an abelian group under the operation of addition","PeriodicalId":170315,"journal":{"name":"Mathematica Montisnigri","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified Fourier transform and its properties\",\"authors\":\"D. Khan, A. Rehman, Saleem Iqbal, Ali Ahmed, Sana Jafar, M. Baloch\",\"doi\":\"10.20948/mathmontis-2021-51-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript we recommend a new description of the modified Fourier transform for a function which is absolutely integrable, having finite number of maxima and minima and finite number of discontinuities which further takes the form of simple Fourier transform for substituting α = e where α > 0 and α ≠ 1. Moreover we prove various results of the modified Fourier transform and also we show that the set that consists of whole modified Fourier transformable functions under the convolution operation is a commutative semi group as well as form an abelian group under the operation of addition\",\"PeriodicalId\":170315,\"journal\":{\"name\":\"Mathematica Montisnigri\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematica Montisnigri\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20948/mathmontis-2021-51-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematica Montisnigri","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20948/mathmontis-2021-51-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对具有有限个极大值、极小值和有限个不连续点的绝对可积函数的修正傅里叶变换提出了一种新的描述,进一步采用简单傅里叶变换的形式将α = e替换为α > 0且α≠1的函数。证明了修正傅里叶变换的各种结果,并证明了在卷积运算下由整个修正傅里叶变换函数组成的集合是可交换半群,在加法运算下形成了一个阿贝尔群
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modified Fourier transform and its properties
In this manuscript we recommend a new description of the modified Fourier transform for a function which is absolutely integrable, having finite number of maxima and minima and finite number of discontinuities which further takes the form of simple Fourier transform for substituting α = e where α > 0 and α ≠ 1. Moreover we prove various results of the modified Fourier transform and also we show that the set that consists of whole modified Fourier transformable functions under the convolution operation is a commutative semi group as well as form an abelian group under the operation of addition
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信