具有功能微结构的玻璃光学的复制制造

C. Rojacher, T. Grunwald, T. Bergs
{"title":"具有功能微结构的玻璃光学的复制制造","authors":"C. Rojacher, T. Grunwald, T. Bergs","doi":"10.1117/12.2526733","DOIUrl":null,"url":null,"abstract":"Microstructuring of glass optics enables a large variety of benefits for miscellaneous fields of application. From an enhancement of the performance of optical systems to the haptic improvement of coverglasses – the advantages of structured glass are obvious. Especially in the field of high-precision optics, microstructured optical surfaces can carry out important functions, such as beam shaping in laser systems or the correction of dispersive color alterations. Besides enhancements regarding optics of the visible light spectrum, microstructures can compensate disadvantages of infrared(IR)-transmissive lenses such as chalcogenide glasses. As these optics suffer high transmission losses due to their high refractive index the integration of an anti-reflective (AR) function is necessary. Moth-eye-structures are a promising way to avoid the currently used AR-coatings. So far, microstructures are brought into the lens’ surface by lithography mainly. The therefore additional processing step follows the previous shaping. An efficient production of the structured components is the key to success for applications aside science and research. The technology precision glass molding (PGM) is able to combine the contradicting aspects of high precision and high volume production. PGM is a replicative manufacturing method that allows the macroscopic molding and the manufacturing of microscopic structures to be carried out simultaneously. Based on a representative PGM process chain, the paper at hand describes differences, challenges and current research results regarding molding microstructures.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Replicative manufacturing of glass optics with functional microstructures\",\"authors\":\"C. Rojacher, T. Grunwald, T. Bergs\",\"doi\":\"10.1117/12.2526733\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microstructuring of glass optics enables a large variety of benefits for miscellaneous fields of application. From an enhancement of the performance of optical systems to the haptic improvement of coverglasses – the advantages of structured glass are obvious. Especially in the field of high-precision optics, microstructured optical surfaces can carry out important functions, such as beam shaping in laser systems or the correction of dispersive color alterations. Besides enhancements regarding optics of the visible light spectrum, microstructures can compensate disadvantages of infrared(IR)-transmissive lenses such as chalcogenide glasses. As these optics suffer high transmission losses due to their high refractive index the integration of an anti-reflective (AR) function is necessary. Moth-eye-structures are a promising way to avoid the currently used AR-coatings. So far, microstructures are brought into the lens’ surface by lithography mainly. The therefore additional processing step follows the previous shaping. An efficient production of the structured components is the key to success for applications aside science and research. The technology precision glass molding (PGM) is able to combine the contradicting aspects of high precision and high volume production. PGM is a replicative manufacturing method that allows the macroscopic molding and the manufacturing of microscopic structures to be carried out simultaneously. Based on a representative PGM process chain, the paper at hand describes differences, challenges and current research results regarding molding microstructures.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2526733\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2526733","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

玻璃光学的微结构为各种各样的应用领域带来了各种各样的好处。从光学系统性能的增强到盖板玻璃的触觉改善,结构玻璃的优势是显而易见的。特别是在高精度光学领域,微结构光学表面可以实现重要的功能,如激光系统中的光束整形或色散变化的校正。除了增强可见光光谱的光学性能外,微结构还可以弥补红外(IR)透射透镜(如硫系玻璃)的缺点。由于这些光学器件由于其高折射率而遭受高传输损耗,因此必须集成抗反射(AR)功能。蛾眼结构是一种很有前途的方法,可以避免目前使用的ar涂层。目前,微结构主要是通过光刻技术带入透镜表面的。因此,附加的加工步骤遵循先前的成型。除了科学和研究之外,有效地生产结构化组件是应用成功的关键。精密玻璃模压(PGM)技术能够结合高精度和大批量生产的矛盾方面。PGM是一种可以同时进行宏观成型和微观结构制造的复制制造方法。本文以典型的PGM工艺链为基础,介绍了成型微结构的差异、挑战和目前的研究成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Replicative manufacturing of glass optics with functional microstructures
Microstructuring of glass optics enables a large variety of benefits for miscellaneous fields of application. From an enhancement of the performance of optical systems to the haptic improvement of coverglasses – the advantages of structured glass are obvious. Especially in the field of high-precision optics, microstructured optical surfaces can carry out important functions, such as beam shaping in laser systems or the correction of dispersive color alterations. Besides enhancements regarding optics of the visible light spectrum, microstructures can compensate disadvantages of infrared(IR)-transmissive lenses such as chalcogenide glasses. As these optics suffer high transmission losses due to their high refractive index the integration of an anti-reflective (AR) function is necessary. Moth-eye-structures are a promising way to avoid the currently used AR-coatings. So far, microstructures are brought into the lens’ surface by lithography mainly. The therefore additional processing step follows the previous shaping. An efficient production of the structured components is the key to success for applications aside science and research. The technology precision glass molding (PGM) is able to combine the contradicting aspects of high precision and high volume production. PGM is a replicative manufacturing method that allows the macroscopic molding and the manufacturing of microscopic structures to be carried out simultaneously. Based on a representative PGM process chain, the paper at hand describes differences, challenges and current research results regarding molding microstructures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信