基于输入输出方法的遥操作系统时滞相关稳定性分析

Amal Hader, Chakir El Kasri, E. Tissir, F. E. Haoussi
{"title":"基于输入输出方法的遥操作系统时滞相关稳定性分析","authors":"Amal Hader, Chakir El Kasri, E. Tissir, F. E. Haoussi","doi":"10.1109/ISACS48493.2019.9068883","DOIUrl":null,"url":null,"abstract":"In this paper the stability analysis problem of bilateral teleoperation systems with time varying delay is studied. By using the scaled small gain theorem (SSG) with three therms approximation of delayed state, and choosing adequate Lyapunov-Krasovskii (L-K) functional a new stability criterion is expressed in terms of linear matrix inequalities. The criterion can be easily examined using standard numerical simulation.","PeriodicalId":312521,"journal":{"name":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","volume":"260 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Delay dependent Stability analysis of Teleoperation Systems via input output approach\",\"authors\":\"Amal Hader, Chakir El Kasri, E. Tissir, F. E. Haoussi\",\"doi\":\"10.1109/ISACS48493.2019.9068883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the stability analysis problem of bilateral teleoperation systems with time varying delay is studied. By using the scaled small gain theorem (SSG) with three therms approximation of delayed state, and choosing adequate Lyapunov-Krasovskii (L-K) functional a new stability criterion is expressed in terms of linear matrix inequalities. The criterion can be easily examined using standard numerical simulation.\",\"PeriodicalId\":312521,\"journal\":{\"name\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"volume\":\"260 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISACS48493.2019.9068883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISACS48493.2019.9068883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

研究了具有时变时滞的双边遥操作系统的稳定性分析问题。利用具有延迟状态三热近似的标度小增益定理(SSG),选择适当的Lyapunov-Krasovskii (L-K)泛函,用线性矩阵不等式表示了一个新的稳定性判据。该准则可以很容易地用标准数值模拟来检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Delay dependent Stability analysis of Teleoperation Systems via input output approach
In this paper the stability analysis problem of bilateral teleoperation systems with time varying delay is studied. By using the scaled small gain theorem (SSG) with three therms approximation of delayed state, and choosing adequate Lyapunov-Krasovskii (L-K) functional a new stability criterion is expressed in terms of linear matrix inequalities. The criterion can be easily examined using standard numerical simulation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信