快速高效VLSI加法器

T. Han, D. A. Carlson
{"title":"快速高效VLSI加法器","authors":"T. Han, D. A. Carlson","doi":"10.1109/ARITH.1987.6158699","DOIUrl":null,"url":null,"abstract":"In this paper, we study area-time tradeoffs in VLSI for prefix computation using graph representations of this problem. Since the problem is intimately related to binary addition, the results we obtain lead to the design of area-time efficient VLSI adders. This is a major goal of our work: to design very low latency addition circuitry that is also area efficient. To this end, we present a new graph representation for prefix computation that leads to the design of a fast, area-efficient binary adder. The new graph is a combination of previously known graph representations for prefix computation, and its area is close to known lower bounds on the VLSI area of parallel prefix graphs. Using it, we are able to design VLSI adders having area A = 0(n log n) whose delay time is the lowest possible value, i. e. the fastest possible area-efficient VLSI adder.","PeriodicalId":424620,"journal":{"name":"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)","volume":"84 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"354","resultStr":"{\"title\":\"Fast area-efficient VLSI adders\",\"authors\":\"T. Han, D. A. Carlson\",\"doi\":\"10.1109/ARITH.1987.6158699\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study area-time tradeoffs in VLSI for prefix computation using graph representations of this problem. Since the problem is intimately related to binary addition, the results we obtain lead to the design of area-time efficient VLSI adders. This is a major goal of our work: to design very low latency addition circuitry that is also area efficient. To this end, we present a new graph representation for prefix computation that leads to the design of a fast, area-efficient binary adder. The new graph is a combination of previously known graph representations for prefix computation, and its area is close to known lower bounds on the VLSI area of parallel prefix graphs. Using it, we are able to design VLSI adders having area A = 0(n log n) whose delay time is the lowest possible value, i. e. the fastest possible area-efficient VLSI adder.\",\"PeriodicalId\":424620,\"journal\":{\"name\":\"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)\",\"volume\":\"84 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1987-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"354\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ARITH.1987.6158699\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1987 IEEE 8th Symposium on Computer Arithmetic (ARITH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ARITH.1987.6158699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 354

摘要

在本文中,我们研究了在VLSI的区域-时间权衡的前缀计算使用图表示的问题。由于该问题与二进制加法密切相关,我们得到的结果将导致设计面积时间高效的VLSI加法器。这是我们工作的一个主要目标:设计非常低延迟的附加电路,也具有面积效率。为此,我们提出了一种新的前缀计算图表示,从而设计了一种快速,面积有效的二进制加法器。新图结合了先前已知的用于前缀计算的图表示,其面积接近并行前缀图的VLSI区域的已知下界。使用它,我们能够设计面积A = 0(n log n)的VLSI加法器,其延迟时间是尽可能低的值,即可能最快的面积高效VLSI加法器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast area-efficient VLSI adders
In this paper, we study area-time tradeoffs in VLSI for prefix computation using graph representations of this problem. Since the problem is intimately related to binary addition, the results we obtain lead to the design of area-time efficient VLSI adders. This is a major goal of our work: to design very low latency addition circuitry that is also area efficient. To this end, we present a new graph representation for prefix computation that leads to the design of a fast, area-efficient binary adder. The new graph is a combination of previously known graph representations for prefix computation, and its area is close to known lower bounds on the VLSI area of parallel prefix graphs. Using it, we are able to design VLSI adders having area A = 0(n log n) whose delay time is the lowest possible value, i. e. the fastest possible area-efficient VLSI adder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信