灰度图像的深度逐块着色模型

X. Liang, Zhuo Su, Yiqi Xiao, Jiaming Guo, Xiaonan Luo
{"title":"灰度图像的深度逐块着色模型","authors":"X. Liang, Zhuo Su, Yiqi Xiao, Jiaming Guo, Xiaonan Luo","doi":"10.1145/3005358.3005375","DOIUrl":null,"url":null,"abstract":"To handle the colorization problem, we propose a deep patch-wise colorization model for grayscale images. Distinguished with some constructive color mapping models with complicated mathematical priors, we alternately apply two loss metric functions in the deep model to suppress the training errors under the convolutional neural network. To address the potential boundary artifacts, a refinement scheme is presented inspired by guided filtering. In the experiment section, we summarize our network parameters setting in practice, including the patch size, amount of layers and the convolution kernels. Our experiments demonstrate this model can output more satisfactory visual colorizations compared with the state-of-the-art methods. Moreover, we prove our method has extensive application domains and can be applied to stylistic colorization.","PeriodicalId":242138,"journal":{"name":"SIGGRAPH ASIA 2016 Technical Briefs","volume":"259 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Deep patch-wise colorization model for grayscale images\",\"authors\":\"X. Liang, Zhuo Su, Yiqi Xiao, Jiaming Guo, Xiaonan Luo\",\"doi\":\"10.1145/3005358.3005375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To handle the colorization problem, we propose a deep patch-wise colorization model for grayscale images. Distinguished with some constructive color mapping models with complicated mathematical priors, we alternately apply two loss metric functions in the deep model to suppress the training errors under the convolutional neural network. To address the potential boundary artifacts, a refinement scheme is presented inspired by guided filtering. In the experiment section, we summarize our network parameters setting in practice, including the patch size, amount of layers and the convolution kernels. Our experiments demonstrate this model can output more satisfactory visual colorizations compared with the state-of-the-art methods. Moreover, we prove our method has extensive application domains and can be applied to stylistic colorization.\",\"PeriodicalId\":242138,\"journal\":{\"name\":\"SIGGRAPH ASIA 2016 Technical Briefs\",\"volume\":\"259 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH ASIA 2016 Technical Briefs\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3005358.3005375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH ASIA 2016 Technical Briefs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3005358.3005375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

为了解决灰度图像的着色问题,提出了一种灰度图像的深度逐块着色模型。与一些具有复杂数学先验的构造性颜色映射模型不同,我们在深度模型中交替应用两个损失度量函数来抑制卷积神经网络下的训练误差。为了解决潜在的边界伪影,提出了一种受引导滤波启发的细化方案。在实验部分,我们总结了我们在实践中设置的网络参数,包括补丁大小、层数和卷积核。我们的实验表明,与现有的方法相比,该模型可以输出更令人满意的视觉着色。此外,我们还证明了该方法具有广泛的应用领域,可以应用于风格着色。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep patch-wise colorization model for grayscale images
To handle the colorization problem, we propose a deep patch-wise colorization model for grayscale images. Distinguished with some constructive color mapping models with complicated mathematical priors, we alternately apply two loss metric functions in the deep model to suppress the training errors under the convolutional neural network. To address the potential boundary artifacts, a refinement scheme is presented inspired by guided filtering. In the experiment section, we summarize our network parameters setting in practice, including the patch size, amount of layers and the convolution kernels. Our experiments demonstrate this model can output more satisfactory visual colorizations compared with the state-of-the-art methods. Moreover, we prove our method has extensive application domains and can be applied to stylistic colorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信