SparTen:利用Kokkos在二阶方法中的节点并行性拟合规范多进张量模型到泊松数据

K. Teranishi, Daniel M. Dunlavy, J. Myers, R. Barrett
{"title":"SparTen:利用Kokkos在二阶方法中的节点并行性拟合规范多进张量模型到泊松数据","authors":"K. Teranishi, Daniel M. Dunlavy, J. Myers, R. Barrett","doi":"10.1109/HPEC43674.2020.9286251","DOIUrl":null,"url":null,"abstract":"Canonical Polyadic tensor decomposition using alternate Poisson regression (CP-APR) is an effective analysis tool for large sparse count datasets. One of the variants using projected damped Newton optimization for row subproblems (PDNR) offers quadratic convergence and is amenable to parallelization. Despite its potential effectiveness, PDNR performance on modern high performance computing (HPC) systems is not well understood. To remedy this, we have developed a parallel implementation of PDNR using Kokkos, a performance portable parallel programming framework supporting efficient runtime of a single code base on multiple HPC systems. We demonstrate that the performance of parallel PDNR can be poor if load imbalance associated with the irregular distribution of nonzero entries in the tensor data is not addressed. Preliminary results using tensors from the FROSTT data set indicate that using multiple kernels to address this imbalance when solving the PDNR row subproblems in parallel can improve performance, with up to 80% speedup on CPUs and 10-fold speedup on NVIDIA GPUs.","PeriodicalId":168544,"journal":{"name":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"SparTen: Leveraging Kokkos for On-node Parallelism in a Second-Order Method for Fitting Canonical Polyadic Tensor Models to Poisson Data\",\"authors\":\"K. Teranishi, Daniel M. Dunlavy, J. Myers, R. Barrett\",\"doi\":\"10.1109/HPEC43674.2020.9286251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canonical Polyadic tensor decomposition using alternate Poisson regression (CP-APR) is an effective analysis tool for large sparse count datasets. One of the variants using projected damped Newton optimization for row subproblems (PDNR) offers quadratic convergence and is amenable to parallelization. Despite its potential effectiveness, PDNR performance on modern high performance computing (HPC) systems is not well understood. To remedy this, we have developed a parallel implementation of PDNR using Kokkos, a performance portable parallel programming framework supporting efficient runtime of a single code base on multiple HPC systems. We demonstrate that the performance of parallel PDNR can be poor if load imbalance associated with the irregular distribution of nonzero entries in the tensor data is not addressed. Preliminary results using tensors from the FROSTT data set indicate that using multiple kernels to address this imbalance when solving the PDNR row subproblems in parallel can improve performance, with up to 80% speedup on CPUs and 10-fold speedup on NVIDIA GPUs.\",\"PeriodicalId\":168544,\"journal\":{\"name\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE High Performance Extreme Computing Conference (HPEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HPEC43674.2020.9286251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC43674.2020.9286251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

基于交替泊松回归的正则多进张量分解(CP-APR)是处理大型稀疏计数数据集的有效分析工具。对行子问题(PDNR)使用投影阻尼牛顿优化的一种变体提供了二次收敛性,并且适合并行化。尽管具有潜在的有效性,但PDNR在现代高性能计算(HPC)系统上的性能尚未得到很好的理解。为了解决这个问题,我们使用Kokkos开发了PDNR的并行实现,Kokkos是一个性能可移植的并行编程框架,支持在多个HPC系统上高效运行单个代码库。我们证明,如果不解决与张量数据中非零项的不规则分布相关的负载不平衡,并行PDNR的性能可能会很差。使用FROSTT数据集的张量的初步结果表明,在并行解决PDNR行子问题时,使用多个内核来解决这种不平衡可以提高性能,在cpu上加速高达80%,在NVIDIA gpu上加速高达10倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SparTen: Leveraging Kokkos for On-node Parallelism in a Second-Order Method for Fitting Canonical Polyadic Tensor Models to Poisson Data
Canonical Polyadic tensor decomposition using alternate Poisson regression (CP-APR) is an effective analysis tool for large sparse count datasets. One of the variants using projected damped Newton optimization for row subproblems (PDNR) offers quadratic convergence and is amenable to parallelization. Despite its potential effectiveness, PDNR performance on modern high performance computing (HPC) systems is not well understood. To remedy this, we have developed a parallel implementation of PDNR using Kokkos, a performance portable parallel programming framework supporting efficient runtime of a single code base on multiple HPC systems. We demonstrate that the performance of parallel PDNR can be poor if load imbalance associated with the irregular distribution of nonzero entries in the tensor data is not addressed. Preliminary results using tensors from the FROSTT data set indicate that using multiple kernels to address this imbalance when solving the PDNR row subproblems in parallel can improve performance, with up to 80% speedup on CPUs and 10-fold speedup on NVIDIA GPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信