基于多源数据和深度学习的城市道路质量设计

Lianguo Kang, Jihui Zhang, Xinwu Jiao
{"title":"基于多源数据和深度学习的城市道路质量设计","authors":"Lianguo Kang, Jihui Zhang, Xinwu Jiao","doi":"10.23919/WAC55640.2022.9934648","DOIUrl":null,"url":null,"abstract":"Digital road information is not only an important basic geographic element, but also a key component of basic geographic information in China. Accurate access to digital road information is very important for traffic management, urban planning, road control, GPS navigation and map updating. At present, there are two main ways to obtain digital road information: GPS trajectory data and remote sensing image. The road target in remote sensing image has remarkable characteristics in space, radiation, topology and texture. With the popularization of deep learning, the method of road extraction from remote sensing image using deep learning has become the main research direction of road extraction. this paper supports multi-source data.","PeriodicalId":339737,"journal":{"name":"2022 World Automation Congress (WAC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban road quality design supported by multi-source data and deep learning\",\"authors\":\"Lianguo Kang, Jihui Zhang, Xinwu Jiao\",\"doi\":\"10.23919/WAC55640.2022.9934648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital road information is not only an important basic geographic element, but also a key component of basic geographic information in China. Accurate access to digital road information is very important for traffic management, urban planning, road control, GPS navigation and map updating. At present, there are two main ways to obtain digital road information: GPS trajectory data and remote sensing image. The road target in remote sensing image has remarkable characteristics in space, radiation, topology and texture. With the popularization of deep learning, the method of road extraction from remote sensing image using deep learning has become the main research direction of road extraction. this paper supports multi-source data.\",\"PeriodicalId\":339737,\"journal\":{\"name\":\"2022 World Automation Congress (WAC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 World Automation Congress (WAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/WAC55640.2022.9934648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WAC55640.2022.9934648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数字道路信息是重要的基础地理要素,是中国基础地理信息的关键组成部分。准确获取数字道路信息对于交通管理、城市规划、道路控制、GPS导航和地图更新非常重要。目前,获取数字化道路信息的途径主要有两种:GPS轨迹数据和遥感影像。遥感影像中的道路目标具有显著的空间特征、辐射特征、拓扑特征和纹理特征。随着深度学习的普及,利用深度学习从遥感图像中提取道路的方法已成为道路提取的主要研究方向。本文支持多源数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Urban road quality design supported by multi-source data and deep learning
Digital road information is not only an important basic geographic element, but also a key component of basic geographic information in China. Accurate access to digital road information is very important for traffic management, urban planning, road control, GPS navigation and map updating. At present, there are two main ways to obtain digital road information: GPS trajectory data and remote sensing image. The road target in remote sensing image has remarkable characteristics in space, radiation, topology and texture. With the popularization of deep learning, the method of road extraction from remote sensing image using deep learning has become the main research direction of road extraction. this paper supports multi-source data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信