光伏与风电并网配电系统谐波与TIF分析

Arnab Ari, Aashish Kumar Bohre
{"title":"光伏与风电并网配电系统谐波与TIF分析","authors":"Arnab Ari, Aashish Kumar Bohre","doi":"10.1109/ICICCSP53532.2022.9862320","DOIUrl":null,"url":null,"abstract":"Renewable energy resources have an inherent drawback: they are intermittent. Due to this, individual renewable resources in standalone scenarios are not reliable and thus cannot be utilized for practical large-scale applications. A hybrid renewable energy system solves this issue by integrating multiple renewable, non-renewable and storage systems. Since multiple sources are used, distributed generation is possible in the case of HRES. This will not only help to satisfy the demand but also reduce losses and improve voltage profile besides reducing carbon footprint. This paper studies the effect of PV and WTG on the load flow and harmonics in a gird connected radial distribution system. Modeling of the system is discussed with four different cases for comparison. Harmonic analysis is performed to obtain the THD and TIF parameters to understand the voltage and current distortions and their effect on communication systems. It is found that the PV and Wind power generation system provides the best voltage profile. The bus voltage distortions are decreased and the branch currents are relatively distorted.","PeriodicalId":326163,"journal":{"name":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harmonic and TIF Analysis in Distribution System with Integration of PV and Wind Systems\",\"authors\":\"Arnab Ari, Aashish Kumar Bohre\",\"doi\":\"10.1109/ICICCSP53532.2022.9862320\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy resources have an inherent drawback: they are intermittent. Due to this, individual renewable resources in standalone scenarios are not reliable and thus cannot be utilized for practical large-scale applications. A hybrid renewable energy system solves this issue by integrating multiple renewable, non-renewable and storage systems. Since multiple sources are used, distributed generation is possible in the case of HRES. This will not only help to satisfy the demand but also reduce losses and improve voltage profile besides reducing carbon footprint. This paper studies the effect of PV and WTG on the load flow and harmonics in a gird connected radial distribution system. Modeling of the system is discussed with four different cases for comparison. Harmonic analysis is performed to obtain the THD and TIF parameters to understand the voltage and current distortions and their effect on communication systems. It is found that the PV and Wind power generation system provides the best voltage profile. The bus voltage distortions are decreased and the branch currents are relatively distorted.\",\"PeriodicalId\":326163,\"journal\":{\"name\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICCSP53532.2022.9862320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Intelligent Controller and Computing for Smart Power (ICICCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICCSP53532.2022.9862320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源有一个固有的缺点:它们是间歇性的。因此,独立场景下的单个可再生资源不可靠,因此无法用于实际的大规模应用。混合可再生能源系统通过集成多个可再生、不可再生和存储系统来解决这一问题。由于使用了多个源,因此在HRES的情况下可以进行分布式生成。这不仅有助于满足需求,而且还可以减少损耗和改善电压分布,同时减少碳足迹。本文研究了并网径向配电系统中PV和WTG对潮流和谐波的影响。通过四种不同的案例对系统的建模进行了讨论,以便进行比较。通过谐波分析得到THD和TIF参数,了解电压和电流畸变及其对通信系统的影响。研究发现,光伏和风力发电系统的电压分布最佳。母线电压畸变减小,支路电流相对畸变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Harmonic and TIF Analysis in Distribution System with Integration of PV and Wind Systems
Renewable energy resources have an inherent drawback: they are intermittent. Due to this, individual renewable resources in standalone scenarios are not reliable and thus cannot be utilized for practical large-scale applications. A hybrid renewable energy system solves this issue by integrating multiple renewable, non-renewable and storage systems. Since multiple sources are used, distributed generation is possible in the case of HRES. This will not only help to satisfy the demand but also reduce losses and improve voltage profile besides reducing carbon footprint. This paper studies the effect of PV and WTG on the load flow and harmonics in a gird connected radial distribution system. Modeling of the system is discussed with four different cases for comparison. Harmonic analysis is performed to obtain the THD and TIF parameters to understand the voltage and current distortions and their effect on communication systems. It is found that the PV and Wind power generation system provides the best voltage profile. The bus voltage distortions are decreased and the branch currents are relatively distorted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信