{"title":"考虑技术和区域约束的混合小区高度合法化","authors":"Ziran Zhu, Xingquan Li, Yuhang Chen, Jianli Chen, Wen-xing Zhu, Yao-Wen Chang","doi":"10.1145/3240765.3240826","DOIUrl":null,"url":null,"abstract":"Mixed-cell-height circuits have become popular in advanced technologies for better power, area, routability, and performance tradeoffs. With the technology and region constraints imposed by modern circuit designs, the mixed-cell-height legalization problem has become more challenging. In this paper, we present an effective and efficient legalization algorithm for mixed-cell-height circuit designs with technology and region constraints. We first present a fence region handling technique to unify the fence regions and the default ones. To obtain a desired cell assignment, we then propose a movement-aware cell reassignment method by iteratively reassigning cells in locally dense areas to their desired rows. After cell reassignment, a technology-aware legalization is presented to remove cell overlaps while satisfying the technology constraints. Finally, we propose a technology-aware refinement to further reduce the average and maximum cell movements without increasing the technology constraints violations. Compared with the champion of the 2017 ICCAD CAD Contest and the state-of-the-art work, experimental results show that our algorithm achieves the best average and maximum cell movements and significantly fewer technology constraint violations, in a comparable runtime.","PeriodicalId":413037,"journal":{"name":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Mixed-Cell-Height Legalization Considering Technology and Region Constraints\",\"authors\":\"Ziran Zhu, Xingquan Li, Yuhang Chen, Jianli Chen, Wen-xing Zhu, Yao-Wen Chang\",\"doi\":\"10.1145/3240765.3240826\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mixed-cell-height circuits have become popular in advanced technologies for better power, area, routability, and performance tradeoffs. With the technology and region constraints imposed by modern circuit designs, the mixed-cell-height legalization problem has become more challenging. In this paper, we present an effective and efficient legalization algorithm for mixed-cell-height circuit designs with technology and region constraints. We first present a fence region handling technique to unify the fence regions and the default ones. To obtain a desired cell assignment, we then propose a movement-aware cell reassignment method by iteratively reassigning cells in locally dense areas to their desired rows. After cell reassignment, a technology-aware legalization is presented to remove cell overlaps while satisfying the technology constraints. Finally, we propose a technology-aware refinement to further reduce the average and maximum cell movements without increasing the technology constraints violations. Compared with the champion of the 2017 ICCAD CAD Contest and the state-of-the-art work, experimental results show that our algorithm achieves the best average and maximum cell movements and significantly fewer technology constraint violations, in a comparable runtime.\",\"PeriodicalId\":413037,\"journal\":{\"name\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3240765.3240826\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3240765.3240826","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mixed-Cell-Height Legalization Considering Technology and Region Constraints
Mixed-cell-height circuits have become popular in advanced technologies for better power, area, routability, and performance tradeoffs. With the technology and region constraints imposed by modern circuit designs, the mixed-cell-height legalization problem has become more challenging. In this paper, we present an effective and efficient legalization algorithm for mixed-cell-height circuit designs with technology and region constraints. We first present a fence region handling technique to unify the fence regions and the default ones. To obtain a desired cell assignment, we then propose a movement-aware cell reassignment method by iteratively reassigning cells in locally dense areas to their desired rows. After cell reassignment, a technology-aware legalization is presented to remove cell overlaps while satisfying the technology constraints. Finally, we propose a technology-aware refinement to further reduce the average and maximum cell movements without increasing the technology constraints violations. Compared with the champion of the 2017 ICCAD CAD Contest and the state-of-the-art work, experimental results show that our algorithm achieves the best average and maximum cell movements and significantly fewer technology constraint violations, in a comparable runtime.