基于无人机高光谱遥感影像的城市河流氨氮监测

Zhou Wang, Lifei Wei, Chujun He, Qikai Lu
{"title":"基于无人机高光谱遥感影像的城市河流氨氮监测","authors":"Zhou Wang, Lifei Wei, Chujun He, Qikai Lu","doi":"10.1109/IGARSS47720.2021.9554632","DOIUrl":null,"url":null,"abstract":"Ammonia nitrogen (NH4-N) can cause water eutrophication and is the main oxygen-consuming pollutant in water bodies. Remote sensing methods are more macroscopic than traditional measurement methods. However, due to the weak optical characteristics of NH4-N, traditional remote sensing data cannot meet the needs of NH4-N monitoring. In response to this problem, this paper attempts to use unmanned aerial vehicles (UAV) hyperspectral imagery combined with extreme gradient boosting (XGBoost)regression algorithm to quantitatively retrieve NH4-N in urban rivers. The results show that compared with the traditional empirical semi-empirical model, the accuracy of using the XGBoost algorithm to estimate the NH4-N in the water body is significantly improved, and is consistent with the field measurement.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Ammonia Nitrogen Monitoring of Urban Rivers with UAV-Borne Hyperspectral Remote Sensing Imagery\",\"authors\":\"Zhou Wang, Lifei Wei, Chujun He, Qikai Lu\",\"doi\":\"10.1109/IGARSS47720.2021.9554632\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ammonia nitrogen (NH4-N) can cause water eutrophication and is the main oxygen-consuming pollutant in water bodies. Remote sensing methods are more macroscopic than traditional measurement methods. However, due to the weak optical characteristics of NH4-N, traditional remote sensing data cannot meet the needs of NH4-N monitoring. In response to this problem, this paper attempts to use unmanned aerial vehicles (UAV) hyperspectral imagery combined with extreme gradient boosting (XGBoost)regression algorithm to quantitatively retrieve NH4-N in urban rivers. The results show that compared with the traditional empirical semi-empirical model, the accuracy of using the XGBoost algorithm to estimate the NH4-N in the water body is significantly improved, and is consistent with the field measurement.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9554632\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9554632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

氨氮(NH4-N)可引起水体富营养化,是水体中主要的耗氧污染物。遥感方法比传统测量方法更宏观。然而,由于NH4-N的光学特性较弱,传统的遥感数据不能满足NH4-N监测的需要。针对这一问题,本文尝试利用无人机(UAV)高光谱影像结合极端梯度提升(XGBoost)回归算法定量检索城市河流NH4-N。结果表明,与传统经验半经验模型相比,利用XGBoost算法估算水体中NH4-N的精度显著提高,且与现场实测结果一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ammonia Nitrogen Monitoring of Urban Rivers with UAV-Borne Hyperspectral Remote Sensing Imagery
Ammonia nitrogen (NH4-N) can cause water eutrophication and is the main oxygen-consuming pollutant in water bodies. Remote sensing methods are more macroscopic than traditional measurement methods. However, due to the weak optical characteristics of NH4-N, traditional remote sensing data cannot meet the needs of NH4-N monitoring. In response to this problem, this paper attempts to use unmanned aerial vehicles (UAV) hyperspectral imagery combined with extreme gradient boosting (XGBoost)regression algorithm to quantitatively retrieve NH4-N in urban rivers. The results show that compared with the traditional empirical semi-empirical model, the accuracy of using the XGBoost algorithm to estimate the NH4-N in the water body is significantly improved, and is consistent with the field measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信