模糊微聚集为透明原理

Q1 Mathematics
Vicenç Torra
{"title":"模糊微聚集为透明原理","authors":"Vicenç Torra","doi":"10.1016/j.jal.2016.11.007","DOIUrl":null,"url":null,"abstract":"<div><p>Microaggregation has been proven to be an effective method for data protection in the areas of Privacy Preserving Data Mining (PPDM) and Statistical Disclosure Control (SDC). This method consists of applying a clustering method to the data set to be protected, and then replacing each of the data by the cluster representative.</p><p>In this paper we propose a new method for microaggregation based on fuzzy clustering. This new approach has been defined with the main goal of being nondeterministic on the assignment of cluster centers to the original data, and at the same time being simple in its definition. Being nondeterministic permits us to overcome some of the attacks standard microaggregation suffers.</p></div>","PeriodicalId":54881,"journal":{"name":"Journal of Applied Logic","volume":"23 ","pages":"Pages 70-80"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.007","citationCount":"6","resultStr":"{\"title\":\"Fuzzy microaggregation for the transparency principle\",\"authors\":\"Vicenç Torra\",\"doi\":\"10.1016/j.jal.2016.11.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Microaggregation has been proven to be an effective method for data protection in the areas of Privacy Preserving Data Mining (PPDM) and Statistical Disclosure Control (SDC). This method consists of applying a clustering method to the data set to be protected, and then replacing each of the data by the cluster representative.</p><p>In this paper we propose a new method for microaggregation based on fuzzy clustering. This new approach has been defined with the main goal of being nondeterministic on the assignment of cluster centers to the original data, and at the same time being simple in its definition. Being nondeterministic permits us to overcome some of the attacks standard microaggregation suffers.</p></div>\",\"PeriodicalId\":54881,\"journal\":{\"name\":\"Journal of Applied Logic\",\"volume\":\"23 \",\"pages\":\"Pages 70-80\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jal.2016.11.007\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Logic\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1570868316300611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Logic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1570868316300611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

在隐私保护数据挖掘(PPDM)和统计披露控制(SDC)领域,微聚合已被证明是一种有效的数据保护方法。该方法包括对要保护的数据集应用聚类方法,然后用聚类代表替换每个数据。本文提出了一种基于模糊聚类的微聚集新方法。这种新方法的主要目标是在原始数据的聚类中心分配上不确定,同时在定义上简单。不确定性使我们能够克服标准微聚合所遭受的一些攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy microaggregation for the transparency principle

Microaggregation has been proven to be an effective method for data protection in the areas of Privacy Preserving Data Mining (PPDM) and Statistical Disclosure Control (SDC). This method consists of applying a clustering method to the data set to be protected, and then replacing each of the data by the cluster representative.

In this paper we propose a new method for microaggregation based on fuzzy clustering. This new approach has been defined with the main goal of being nondeterministic on the assignment of cluster centers to the original data, and at the same time being simple in its definition. Being nondeterministic permits us to overcome some of the attacks standard microaggregation suffers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Logic
Journal of Applied Logic COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE-COMPUTER SCIENCE, THEORY & METHODS
CiteScore
1.13
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Cessation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信