{"title":"纹理分类的统计小波子带建模","authors":"P. Hill, D. Bull, C. N. Canagarajah","doi":"10.1109/ICIP.2001.958979","DOIUrl":null,"url":null,"abstract":"Simple wavelet and wavelet packet transforms have often been used for texture characterisation through the analysis of spatial-frequency content. However, most previous methods make no use of any statistical analysis of the transforms' subbands. A novel method is now presented for modelling the multivariate distributions of subband coefficients by considering spatially related coefficients. The Bhattacharya and divergence metrics are then used to produce an improved texture classification method for the application to content based image retrieval.","PeriodicalId":291827,"journal":{"name":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Statistical wavelet subband modelling for texture classification\",\"authors\":\"P. Hill, D. Bull, C. N. Canagarajah\",\"doi\":\"10.1109/ICIP.2001.958979\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simple wavelet and wavelet packet transforms have often been used for texture characterisation through the analysis of spatial-frequency content. However, most previous methods make no use of any statistical analysis of the transforms' subbands. A novel method is now presented for modelling the multivariate distributions of subband coefficients by considering spatially related coefficients. The Bhattacharya and divergence metrics are then used to produce an improved texture classification method for the application to content based image retrieval.\",\"PeriodicalId\":291827,\"journal\":{\"name\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"volume\":\"76 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP.2001.958979\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2001.958979","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Statistical wavelet subband modelling for texture classification
Simple wavelet and wavelet packet transforms have often been used for texture characterisation through the analysis of spatial-frequency content. However, most previous methods make no use of any statistical analysis of the transforms' subbands. A novel method is now presented for modelling the multivariate distributions of subband coefficients by considering spatially related coefficients. The Bhattacharya and divergence metrics are then used to produce an improved texture classification method for the application to content based image retrieval.