术后生存预测的复值学习算法研究

Sivachitra Muthusamy, Savitha Ramasamy
{"title":"术后生存预测的复值学习算法研究","authors":"Sivachitra Muthusamy, Savitha Ramasamy","doi":"10.1109/CCIP.2016.7802856","DOIUrl":null,"url":null,"abstract":"Prediction of post-surgery survival of breast cancer patients is critical for long term medical care. In this paper, we study the performances of several complex-valued classifiers in predicting the post-surgical survival, based on the real world Haber data set available in the UCI machine learning repository. The complex-valued classifiers used in the study include the Fully Complex-valued Radial Basis Function (FC-RBF), Fully Complex-valued Relaxation Network (FCRN), Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN), Fully Complex-valued Fast Learning Classifier (FC-FLC), Meta-cognitive Fully Complex-valued Fast Learning Classifier (Mc-FCFLC), Fully Complex-valued Functional Link Network (FCFLN), and Meta-cognitive Fully Complex-valued Functional Link Network (Mc-FCFLN). As the classification performance of the complex-valued classifiers is boosted by the presence of orthogonal decision boundaries, all these classifiers perform better than the state-of-the-art real-valued classifiers. Performance results also show that the Mc-FCFLC and McFCRN outperform other classifiers used in the study. This can be attributed to the meta-cognition that helps in strategic learning in these classifiers.","PeriodicalId":354589,"journal":{"name":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","volume":"247 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of Complex-valued Learning algorithms for Post-surgery survival prediction\",\"authors\":\"Sivachitra Muthusamy, Savitha Ramasamy\",\"doi\":\"10.1109/CCIP.2016.7802856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of post-surgery survival of breast cancer patients is critical for long term medical care. In this paper, we study the performances of several complex-valued classifiers in predicting the post-surgical survival, based on the real world Haber data set available in the UCI machine learning repository. The complex-valued classifiers used in the study include the Fully Complex-valued Radial Basis Function (FC-RBF), Fully Complex-valued Relaxation Network (FCRN), Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN), Fully Complex-valued Fast Learning Classifier (FC-FLC), Meta-cognitive Fully Complex-valued Fast Learning Classifier (Mc-FCFLC), Fully Complex-valued Functional Link Network (FCFLN), and Meta-cognitive Fully Complex-valued Functional Link Network (Mc-FCFLN). As the classification performance of the complex-valued classifiers is boosted by the presence of orthogonal decision boundaries, all these classifiers perform better than the state-of-the-art real-valued classifiers. Performance results also show that the Mc-FCFLC and McFCRN outperform other classifiers used in the study. This can be attributed to the meta-cognition that helps in strategic learning in these classifiers.\",\"PeriodicalId\":354589,\"journal\":{\"name\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"volume\":\"247 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCIP.2016.7802856\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Second International Conference on Cognitive Computing and Information Processing (CCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCIP.2016.7802856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

乳腺癌患者术后生存预测对长期医疗护理至关重要。在本文中,我们基于UCI机器学习存储库中可用的真实世界Haber数据集,研究了几种复杂值分类器在预测术后生存方面的性能。研究中使用的复值分类器包括全复值径向基函数(FC-RBF)、全复值松弛网络(FCRN)、元认知全复值松弛网络(McFCRN)、全复值快速学习分类器(FC-FLC)、元认知全复值快速学习分类器(Mc-FCFLC)、全复值功能链接网络(FCFLN)和元认知全复值功能链接网络(Mc-FCFLN)。由于正交决策边界的存在提高了复值分类器的分类性能,所有这些分类器的分类性能都优于最先进的实值分类器。性能结果还表明,Mc-FCFLC和McFCRN优于研究中使用的其他分类器。这可以归因于元认知有助于这些分类器的策略学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study of Complex-valued Learning algorithms for Post-surgery survival prediction
Prediction of post-surgery survival of breast cancer patients is critical for long term medical care. In this paper, we study the performances of several complex-valued classifiers in predicting the post-surgical survival, based on the real world Haber data set available in the UCI machine learning repository. The complex-valued classifiers used in the study include the Fully Complex-valued Radial Basis Function (FC-RBF), Fully Complex-valued Relaxation Network (FCRN), Meta-cognitive Fully Complex-valued Relaxation Network (McFCRN), Fully Complex-valued Fast Learning Classifier (FC-FLC), Meta-cognitive Fully Complex-valued Fast Learning Classifier (Mc-FCFLC), Fully Complex-valued Functional Link Network (FCFLN), and Meta-cognitive Fully Complex-valued Functional Link Network (Mc-FCFLN). As the classification performance of the complex-valued classifiers is boosted by the presence of orthogonal decision boundaries, all these classifiers perform better than the state-of-the-art real-valued classifiers. Performance results also show that the Mc-FCFLC and McFCRN outperform other classifiers used in the study. This can be attributed to the meta-cognition that helps in strategic learning in these classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信