{"title":"源代码归档分类","authors":"Robert Krovetz, Secil Ugurel, C. Lee Giles","doi":"10.1145/860435.860533","DOIUrl":null,"url":null,"abstract":"The World Wide Web contains a number of source code archives. Programs are usually classified into various categories within the archive by hand. We report on experiments for automatic classification of source code into these categories. We examined a number of factors that affect classification accuracy. Weighting features by expected entropy loss makes a significant improvement in classification accuracy. We show a Support Vector Machine can be trained to classify source code with a high degree of accuracy. We feel these results show promise for software reuse.","PeriodicalId":209809,"journal":{"name":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Classification of source code archives\",\"authors\":\"Robert Krovetz, Secil Ugurel, C. Lee Giles\",\"doi\":\"10.1145/860435.860533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The World Wide Web contains a number of source code archives. Programs are usually classified into various categories within the archive by hand. We report on experiments for automatic classification of source code into these categories. We examined a number of factors that affect classification accuracy. Weighting features by expected entropy loss makes a significant improvement in classification accuracy. We show a Support Vector Machine can be trained to classify source code with a high degree of accuracy. We feel these results show promise for software reuse.\",\"PeriodicalId\":209809,\"journal\":{\"name\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/860435.860533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th annual international ACM SIGIR conference on Research and development in informaion retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/860435.860533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The World Wide Web contains a number of source code archives. Programs are usually classified into various categories within the archive by hand. We report on experiments for automatic classification of source code into these categories. We examined a number of factors that affect classification accuracy. Weighting features by expected entropy loss makes a significant improvement in classification accuracy. We show a Support Vector Machine can be trained to classify source code with a high degree of accuracy. We feel these results show promise for software reuse.