基于样式的文本聚类语义模型

A. Leoncini, Fabio Sangiacomo, C. Peretti, Sonia Argentesi, R. Zunino, E. Cambria
{"title":"基于样式的文本聚类语义模型","authors":"A. Leoncini, Fabio Sangiacomo, C. Peretti, Sonia Argentesi, R. Zunino, E. Cambria","doi":"10.1109/ICSC.2011.24","DOIUrl":null,"url":null,"abstract":"The paper addresses some roles of concept-based representations in document clustering to support knowledge discovery. Computational Intelligence algorithms can benefit from semantic networks in the definition of similarity between pairs of documents. After analyzing the tuning of semantic networks in a systematic fashion, the research defines and evaluates a novel semantic-based metrics, which integrates both classical and style-related features of texts. Experimental results confirm the effectiveness of the approach, showing that applying a refined semantic representation into a clustering engine yields consistent structures for information retrieval and knowledge acquisition.","PeriodicalId":408382,"journal":{"name":"2011 IEEE Fifth International Conference on Semantic Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Semantic Models for Style-Based Text Clustering\",\"authors\":\"A. Leoncini, Fabio Sangiacomo, C. Peretti, Sonia Argentesi, R. Zunino, E. Cambria\",\"doi\":\"10.1109/ICSC.2011.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper addresses some roles of concept-based representations in document clustering to support knowledge discovery. Computational Intelligence algorithms can benefit from semantic networks in the definition of similarity between pairs of documents. After analyzing the tuning of semantic networks in a systematic fashion, the research defines and evaluates a novel semantic-based metrics, which integrates both classical and style-related features of texts. Experimental results confirm the effectiveness of the approach, showing that applying a refined semantic representation into a clustering engine yields consistent structures for information retrieval and knowledge acquisition.\",\"PeriodicalId\":408382,\"journal\":{\"name\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Fifth International Conference on Semantic Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSC.2011.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Fifth International Conference on Semantic Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSC.2011.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文讨论了基于概念的表示在文档聚类中支持知识发现的一些作用。计算智能算法在定义文档对之间的相似性方面可以从语义网络中获益。在系统地分析了语义网络的调整之后,本研究定义并评估了一种新的基于语义的度量,该度量综合了文本的经典和风格相关特征。实验结果证实了该方法的有效性,表明将精细化的语义表示应用到聚类引擎中可以产生一致的信息检索和知识获取结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic Models for Style-Based Text Clustering
The paper addresses some roles of concept-based representations in document clustering to support knowledge discovery. Computational Intelligence algorithms can benefit from semantic networks in the definition of similarity between pairs of documents. After analyzing the tuning of semantic networks in a systematic fashion, the research defines and evaluates a novel semantic-based metrics, which integrates both classical and style-related features of texts. Experimental results confirm the effectiveness of the approach, showing that applying a refined semantic representation into a clustering engine yields consistent structures for information retrieval and knowledge acquisition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信