具有时滞的Ito线性微分方程系统的稳定性

R. Kadiev
{"title":"具有时滞的Ito线性微分方程系统的稳定性","authors":"R. Kadiev","doi":"10.31029/demr.16.3","DOIUrl":null,"url":null,"abstract":"The questions of instant stability of systems of linear differential equations Ito with delays based on the theory of positively reversible matrices are investigated. The ideas and methods developed by N. V. Azbelev and his students to investigate the sustainability of deterministic linear functional--differential equations are used for this. Are brought sufficient conditions $2p$--stability $(1\\le p <\\infty)$ systems of linear differential Ito equations with delays in terms of positive reversibility of the matrices, built according to the parameters of the source system. The fulfillment of these conditions for specific equations is checked.","PeriodicalId":431345,"journal":{"name":"Daghestan Electronic Mathematical Reports","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stability of systems of Ito linear differential equations with delays\",\"authors\":\"R. Kadiev\",\"doi\":\"10.31029/demr.16.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The questions of instant stability of systems of linear differential equations Ito with delays based on the theory of positively reversible matrices are investigated. The ideas and methods developed by N. V. Azbelev and his students to investigate the sustainability of deterministic linear functional--differential equations are used for this. Are brought sufficient conditions $2p$--stability $(1\\\\le p <\\\\infty)$ systems of linear differential Ito equations with delays in terms of positive reversibility of the matrices, built according to the parameters of the source system. The fulfillment of these conditions for specific equations is checked.\",\"PeriodicalId\":431345,\"journal\":{\"name\":\"Daghestan Electronic Mathematical Reports\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Daghestan Electronic Mathematical Reports\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31029/demr.16.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Daghestan Electronic Mathematical Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31029/demr.16.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于正可逆矩阵理论,研究了一类具有时滞的线性微分方程组的瞬时稳定性问题。阿兹别列夫和他的学生研究确定性线性泛函微分方程的可持续性的思想和方法被用于此。给出了根据源系统参数建立的具有矩阵正可逆性时滞的线性微分伊东方程的充分条件$2p$—稳定性$(1\le p <\infty)$。对具体方程的这些条件是否满足进行了检验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability of systems of Ito linear differential equations with delays
The questions of instant stability of systems of linear differential equations Ito with delays based on the theory of positively reversible matrices are investigated. The ideas and methods developed by N. V. Azbelev and his students to investigate the sustainability of deterministic linear functional--differential equations are used for this. Are brought sufficient conditions $2p$--stability $(1\le p <\infty)$ systems of linear differential Ito equations with delays in terms of positive reversibility of the matrices, built according to the parameters of the source system. The fulfillment of these conditions for specific equations is checked.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信