{"title":"文本变量说话人识别的连接音素模型","authors":"Tomoko Matsui, S. Furui","doi":"10.1109/ICASSP.1993.319321","DOIUrl":null,"url":null,"abstract":"Methods that create models to specify both speaker and phonetic information accurately by using only a small amount of training data for each speaker are investigated. For a text-dependent speaker recognition method, in which arbitrary key texts are prompted from the recognizer, speaker-specific phoneme models are necessary to identify the key text and recognize the speaker. Two methods of making speaker-specific phoneme models are discussed: phoneme-adaptation of a phoneme-independent speaker model and speaker-adaptation of universal phoneme models. The authors also investigate supplementing these methods by adding a phoneme-independent speaker model to make up for the lack of speaker information. This combination achieves a rejection rate as high as 98.5% for speech that differs from the key text and a speaker verification rate of 100.0%.<<ETX>>","PeriodicalId":428449,"journal":{"name":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":"{\"title\":\"Concatenated phoneme models for text-variable speaker recognition\",\"authors\":\"Tomoko Matsui, S. Furui\",\"doi\":\"10.1109/ICASSP.1993.319321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Methods that create models to specify both speaker and phonetic information accurately by using only a small amount of training data for each speaker are investigated. For a text-dependent speaker recognition method, in which arbitrary key texts are prompted from the recognizer, speaker-specific phoneme models are necessary to identify the key text and recognize the speaker. Two methods of making speaker-specific phoneme models are discussed: phoneme-adaptation of a phoneme-independent speaker model and speaker-adaptation of universal phoneme models. The authors also investigate supplementing these methods by adding a phoneme-independent speaker model to make up for the lack of speaker information. This combination achieves a rejection rate as high as 98.5% for speech that differs from the key text and a speaker verification rate of 100.0%.<<ETX>>\",\"PeriodicalId\":428449,\"journal\":{\"name\":\"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"134\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.1993.319321\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 IEEE International Conference on Acoustics, Speech, and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.1993.319321","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concatenated phoneme models for text-variable speaker recognition
Methods that create models to specify both speaker and phonetic information accurately by using only a small amount of training data for each speaker are investigated. For a text-dependent speaker recognition method, in which arbitrary key texts are prompted from the recognizer, speaker-specific phoneme models are necessary to identify the key text and recognize the speaker. Two methods of making speaker-specific phoneme models are discussed: phoneme-adaptation of a phoneme-independent speaker model and speaker-adaptation of universal phoneme models. The authors also investigate supplementing these methods by adding a phoneme-independent speaker model to make up for the lack of speaker information. This combination achieves a rejection rate as high as 98.5% for speech that differs from the key text and a speaker verification rate of 100.0%.<>