低成本作物监测多光谱成像系统

A. M. de Oca, L. Arreola, A. Flores, J. Sanchez, G. Flores
{"title":"低成本作物监测多光谱成像系统","authors":"A. M. de Oca, L. Arreola, A. Flores, J. Sanchez, G. Flores","doi":"10.1109/ICUAS.2018.8453426","DOIUrl":null,"url":null,"abstract":"This work presents the design and development of a multispectral imaging system to precision agriculture tasks. The imaging system features two small digital cameras controlled by a microcomputer embedded in a drone. One of the cameras has been modified to be sensitive to near-infrared radiation reflected by the vegetation, whereas the other one remains as a common RGB camera. In order to determine the health status of the crop, the Normalized Difference Vegetation Index (NDVI) is computed in a developed software. Once the aerial imagery is obtained by the drone, it is processed to eliminate image distortions and insert specific metadata needed for generating the orthomosaics with the health information of the plant or soil of interest. Finally, the vegetation index will be computed from the visible and near-infrared orthomosaics for a better interpretation of the user. Experiments are presented to show the effectiveness of the system.","PeriodicalId":246293,"journal":{"name":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","volume":"243 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Low-cost multispectral imaging system for crop monitoring\",\"authors\":\"A. M. de Oca, L. Arreola, A. Flores, J. Sanchez, G. Flores\",\"doi\":\"10.1109/ICUAS.2018.8453426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design and development of a multispectral imaging system to precision agriculture tasks. The imaging system features two small digital cameras controlled by a microcomputer embedded in a drone. One of the cameras has been modified to be sensitive to near-infrared radiation reflected by the vegetation, whereas the other one remains as a common RGB camera. In order to determine the health status of the crop, the Normalized Difference Vegetation Index (NDVI) is computed in a developed software. Once the aerial imagery is obtained by the drone, it is processed to eliminate image distortions and insert specific metadata needed for generating the orthomosaics with the health information of the plant or soil of interest. Finally, the vegetation index will be computed from the visible and near-infrared orthomosaics for a better interpretation of the user. Experiments are presented to show the effectiveness of the system.\",\"PeriodicalId\":246293,\"journal\":{\"name\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"volume\":\"243 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Unmanned Aircraft Systems (ICUAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICUAS.2018.8453426\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Unmanned Aircraft Systems (ICUAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICUAS.2018.8453426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

本文介绍了一种用于精准农业任务的多光谱成像系统的设计和开发。成像系统的特点是两个小型数码相机,由嵌入无人机的微型计算机控制。其中一台相机被改装成对植被反射的近红外辐射敏感,而另一台仍然是普通的RGB相机。为了确定作物的健康状况,在开发的软件中计算归一化植被指数(NDVI)。一旦无人机获得航空图像,就会对其进行处理,以消除图像失真,并插入所需的特定元数据,以生成具有感兴趣植物或土壤健康信息的正立体图。最后,植被指数将从可见光和近红外正像图中计算,以便更好地解释用户。实验证明了该系统的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Low-cost multispectral imaging system for crop monitoring
This work presents the design and development of a multispectral imaging system to precision agriculture tasks. The imaging system features two small digital cameras controlled by a microcomputer embedded in a drone. One of the cameras has been modified to be sensitive to near-infrared radiation reflected by the vegetation, whereas the other one remains as a common RGB camera. In order to determine the health status of the crop, the Normalized Difference Vegetation Index (NDVI) is computed in a developed software. Once the aerial imagery is obtained by the drone, it is processed to eliminate image distortions and insert specific metadata needed for generating the orthomosaics with the health information of the plant or soil of interest. Finally, the vegetation index will be computed from the visible and near-infrared orthomosaics for a better interpretation of the user. Experiments are presented to show the effectiveness of the system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信