结合共聚类和噪声检测进行主题摘要

Xiaoyan Cai, Wenjie Li, Renxian Zhang
{"title":"结合共聚类和噪声检测进行主题摘要","authors":"Xiaoyan Cai, Wenjie Li, Renxian Zhang","doi":"10.1145/2513563","DOIUrl":null,"url":null,"abstract":"To overcome the fact that the length of sentences is short and their content is limited, we regard words as independent text objects rather than features of sentences in sentence clustering and develop two co-clustering frameworks, namely integrated clustering and interactive clustering, to cluster sentences and words simultaneously. Since real-world datasets always contain noise, we incorporate noise detection and removal to enhance clustering of sentences and words. Meanwhile, a semisupervised approach is explored to incorporate the query information (and the sentence information in early document sets) in theme-based summarization. Thorough experimental studies are conducted. When evaluated on the DUC2005-2007 datasets and TAC 2008-2009 datasets, the performance of the two noise-detecting co-clustering approaches is comparable with that of the top three systems. The results also demonstrate that the interactive with noise detection algorithm is more effective than the noise-detecting integrated algorithm.","PeriodicalId":412532,"journal":{"name":"ACM Trans. Speech Lang. Process.","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Combining co-clustering with noise detection for theme-based summarization\",\"authors\":\"Xiaoyan Cai, Wenjie Li, Renxian Zhang\",\"doi\":\"10.1145/2513563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To overcome the fact that the length of sentences is short and their content is limited, we regard words as independent text objects rather than features of sentences in sentence clustering and develop two co-clustering frameworks, namely integrated clustering and interactive clustering, to cluster sentences and words simultaneously. Since real-world datasets always contain noise, we incorporate noise detection and removal to enhance clustering of sentences and words. Meanwhile, a semisupervised approach is explored to incorporate the query information (and the sentence information in early document sets) in theme-based summarization. Thorough experimental studies are conducted. When evaluated on the DUC2005-2007 datasets and TAC 2008-2009 datasets, the performance of the two noise-detecting co-clustering approaches is comparable with that of the top three systems. The results also demonstrate that the interactive with noise detection algorithm is more effective than the noise-detecting integrated algorithm.\",\"PeriodicalId\":412532,\"journal\":{\"name\":\"ACM Trans. Speech Lang. Process.\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Trans. Speech Lang. Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2513563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Trans. Speech Lang. Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2513563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

为了克服句子长度短、内容有限的问题,在句子聚类中,我们将词作为独立的文本对象而不是句子的特征,开发了综合聚类和交互聚类两种共聚类框架,将句子和词同时聚类。由于真实世界的数据集总是包含噪声,我们结合噪声检测和去除来增强句子和单词的聚类。同时,探索了一种半监督的方法,将查询信息(以及早期文档集中的句子信息)整合到基于主题的摘要中。进行了彻底的实验研究。在DUC2005-2007数据集和TAC 2008-2009数据集上进行评估时,两种噪声检测共聚类方法的性能与前三种系统的性能相当。结果还表明,与噪声检测算法的交互比噪声检测集成算法更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining co-clustering with noise detection for theme-based summarization
To overcome the fact that the length of sentences is short and their content is limited, we regard words as independent text objects rather than features of sentences in sentence clustering and develop two co-clustering frameworks, namely integrated clustering and interactive clustering, to cluster sentences and words simultaneously. Since real-world datasets always contain noise, we incorporate noise detection and removal to enhance clustering of sentences and words. Meanwhile, a semisupervised approach is explored to incorporate the query information (and the sentence information in early document sets) in theme-based summarization. Thorough experimental studies are conducted. When evaluated on the DUC2005-2007 datasets and TAC 2008-2009 datasets, the performance of the two noise-detecting co-clustering approaches is comparable with that of the top three systems. The results also demonstrate that the interactive with noise detection algorithm is more effective than the noise-detecting integrated algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信