超越P与NP:大数据问题的二次时间硬度

P. Indyk
{"title":"超越P与NP:大数据问题的二次时间硬度","authors":"P. Indyk","doi":"10.1145/3087556.3087603","DOIUrl":null,"url":null,"abstract":"The theory of NP-hardness has been very successful in identifying problems that are unlikely to be solvable in polynomial time. However, many other important problems do have polynomial time algorithms, but large exponents in their time bounds can make them run for days, weeks or more. For example, quadratic time algorithms, although practical on moderately sized inputs, can become inefficient on big data problems that involve gigabytes or more of data. Although for many problems no sub-quadratic time algorithms are known, any evidence of quadratic-time hardness has remained elusive. In this talk I will give an overview of recent research that aims to remedy this situation. In particular, I will describe hardness results for problems in string processing (e.g., edit distance computation or regular expression matching) and machine learning (e.g., Support Vector Machines or gradient computation in neural networks). All of them have polynomial time algorithms, but despite extensive amount of research, no near-linear time algorithms have been found for many variants of these problems. I will show that, under a natural complexity-theoretic conjecture, such algorithms do not exist. I will also describe how this framework has led to the development of new algorithms.","PeriodicalId":162994,"journal":{"name":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Beyond P vs. NP: Quadratic-Time Hardness for Big Data Problems\",\"authors\":\"P. Indyk\",\"doi\":\"10.1145/3087556.3087603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of NP-hardness has been very successful in identifying problems that are unlikely to be solvable in polynomial time. However, many other important problems do have polynomial time algorithms, but large exponents in their time bounds can make them run for days, weeks or more. For example, quadratic time algorithms, although practical on moderately sized inputs, can become inefficient on big data problems that involve gigabytes or more of data. Although for many problems no sub-quadratic time algorithms are known, any evidence of quadratic-time hardness has remained elusive. In this talk I will give an overview of recent research that aims to remedy this situation. In particular, I will describe hardness results for problems in string processing (e.g., edit distance computation or regular expression matching) and machine learning (e.g., Support Vector Machines or gradient computation in neural networks). All of them have polynomial time algorithms, but despite extensive amount of research, no near-linear time algorithms have been found for many variants of these problems. I will show that, under a natural complexity-theoretic conjecture, such algorithms do not exist. I will also describe how this framework has led to the development of new algorithms.\",\"PeriodicalId\":162994,\"journal\":{\"name\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3087556.3087603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3087556.3087603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

np -硬度理论在识别不可能在多项式时间内解决的问题方面非常成功。然而,许多其他重要问题确实需要多项式时间算法,但是时间范围内的大指数可能会使它们运行数天、数周或更长时间。例如,二次时间算法虽然适用于中等规模的输入,但在涉及千兆字节或更多数据的大数据问题上可能变得低效。虽然对于许多问题没有已知的次二次时间算法,但任何二次时间硬度的证据仍然难以捉摸。在这次演讲中,我将概述旨在纠正这种情况的最新研究。特别是,我将描述字符串处理(例如,编辑距离计算或正则表达式匹配)和机器学习(例如,支持向量机或神经网络中的梯度计算)问题的硬度结果。所有这些问题都有多项式时间算法,但是尽管进行了大量的研究,但对于这些问题的许多变体,还没有发现近线性时间算法。我将证明,在自然的复杂性理论猜想下,这样的算法是不存在的。我还将描述这个框架是如何导致新算法的发展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Beyond P vs. NP: Quadratic-Time Hardness for Big Data Problems
The theory of NP-hardness has been very successful in identifying problems that are unlikely to be solvable in polynomial time. However, many other important problems do have polynomial time algorithms, but large exponents in their time bounds can make them run for days, weeks or more. For example, quadratic time algorithms, although practical on moderately sized inputs, can become inefficient on big data problems that involve gigabytes or more of data. Although for many problems no sub-quadratic time algorithms are known, any evidence of quadratic-time hardness has remained elusive. In this talk I will give an overview of recent research that aims to remedy this situation. In particular, I will describe hardness results for problems in string processing (e.g., edit distance computation or regular expression matching) and machine learning (e.g., Support Vector Machines or gradient computation in neural networks). All of them have polynomial time algorithms, but despite extensive amount of research, no near-linear time algorithms have been found for many variants of these problems. I will show that, under a natural complexity-theoretic conjecture, such algorithms do not exist. I will also describe how this framework has led to the development of new algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信